Beyond Moore’s technologies: operation principles of a superconductor alternative

Igor I. Soloviev, Nikolay V. Klenov, Sergey V. Bakurskiy, Mikhail Yu. Kupriyanov, Alexander L. Gudkov and Anatoli S. Sidorenko
Beilstein J. Nanotechnol. 2017, 8, 2689–2710. https://doi.org/10.3762/bjnano.8.269

Cite the Following Article

Beyond Moore’s technologies: operation principles of a superconductor alternative
Igor I. Soloviev, Nikolay V. Klenov, Sergey V. Bakurskiy, Mikhail Yu. Kupriyanov, Alexander L. Gudkov and Anatoli S. Sidorenko
Beilstein J. Nanotechnol. 2017, 8, 2689–2710. https://doi.org/10.3762/bjnano.8.269

How to Cite

Soloviev, I. I.; Klenov, N. V.; Bakurskiy, S. V.; Kupriyanov, M. Y.; Gudkov, A. L.; Sidorenko, A. S. Beilstein J. Nanotechnol. 2017, 8, 2689–2710. doi:10.3762/bjnano.8.269

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Shuravin, N. S.; Karelina, L. N.; Ionin, A. C.; Razorenov, F. A.; Sidel'nikov, M. S.; Egorov, S. V.; Bol'ginov, V. V. Obobshchennaya model' sverkhprovodnikovogo sigma-neyrona. Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki 2024, 120, 863–870. doi:10.31857/s0370274x24120076
  • Samokhvalov, A. V. Anomal'nyy effekt Dzhozefsona v planarnoy gibridnoy strukture so spin-orbital'nym vzaimodeystviem. Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki 2024, 119, 508–515. doi:10.31857/s1234567824070061
  • Holmes-Hewett, W. F.; Trewick, E. X. M.; Trodahl, H. J.; Buckley, R. G.; Ruck, B. J. Spin polarisation and non-isotropic effective mass in the conduction band of GdN. Journal of physics. Condensed matter : an Institute of Physics journal 2024, 37, 75503. doi:10.1088/1361-648x/ad98dd
  • Porat, O.; Joshy, E.; Miller, J. D.; Granville, S.; Holmes-Hewett, W. F. Tuneable magnetic behavior, electronic structure, and nitrogen vacancy formation in GdxSm1−xN. Physical Review Materials 2024, 8. doi:10.1103/physrevmaterials.8.116201
  • Ruf, L.; Puglia, C.; Elalaily, T.; De Simoni, G.; Joint, F.; Berke, M.; Koch, J.; Iorio, A.; Khorshidian, S.; Makk, P.; Gasparinetti, S.; Csonka, S.; Belzig, W.; Cuoco, M.; Giazotto, F.; Scheer, E.; Di Bernardo, A. Gate control of superconducting current: Mechanisms, parameters, and technological potential. Applied Physics Reviews 2024, 11. doi:10.1063/5.0222371
  • Harvey, R.; Qu, Z. Non-binary Cryogenic Memory Cell Equilibrium Transition Control. Superconductivity - Physics and Devices [Working Title]; IntechOpen, 2024. doi:10.5772/intechopen.1006698
  • Gumarova, I. I.; Gumarov, A. I.; Yanilkin, I. V. Study of the Influence of Ferromagnetic Impurity Concentration on Magnetic Properties of Binary Palladium–Cobalt Alloy. Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ 2024, 24–28. doi:10.31857/s1028096024050041
  • Shan, W.; Ezaki, S. Two-level system loss: Significant not only at millikelvin. Applied Physics Letters 2024, 125. doi:10.1063/5.0226792
  • Kindiak, I.; Mishra, S. S.; Migliorini, A.; Pal, B.; Parkin, S. S. P. Reduced decay in Josephson coupling across ferromagnetic junctions with spin–orbit coupling layers. Applied Physics Letters 2024, 125. doi:10.1063/5.0214835
  • Satariano, R.; Volkov, A. F.; Ahmad, H. G.; Di Palma, L.; Ferraiuolo, R.; Iqbal, Z.; Vettoliere, A.; Granata, C.; Montemurro, D.; Parlato, L.; Pepe, G. P.; Tafuri, F.; Ausanio, G.; Massarotti, D. Evidence of the inverse proximity effect in tunnel magnetic josephson junctions. Low Temperature Physics 2024, 50, 668–675. doi:10.1063/10.0027923
  • Gumarova, I. I.; Gumarov, A. I.; Yanilkin, I. V. Study of the Influence of Ferromagnetic Impurity Concentration on Magnetic Properties of Binary Palladium–Cobalt Alloy. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2024, 18, 526–529. doi:10.1134/s1027451024700046
  • Kikuta, T.; Komori, S.; Imura, K.; Taniyama, T. Electric field enhancement of the superconducting spin-valve effect via strain-transfer across a ferromagnetic/ferroelectric interface. APL Materials 2024, 12. doi:10.1063/5.0211769
  • Monroe, D.; Shen, C.; Tringali, D.; Alidoust, M.; Zhou, T.; Žutić, I. Phase jumps in Josephson junctions with time-dependent spin–orbit coupling. Applied Physics Letters 2024, 125. doi:10.1063/5.0211562
  • Korucu, D.; Loloee, R.; Birge, N. O. Demonstration of 0−π transition in Josephson junctions containing unbalanced synthetic antiferromagnets. Applied Physics Letters 2024, 124. doi:10.1063/5.0215364
  • Hovhannisyan, R. A.; Golod, T.; Krasnov, V. M. Controllable Manipulation of Semifluxon States in Phase-Shifted Josephson Junctions. Physical review letters 2024, 132, 227001. doi:10.1103/physrevlett.132.227001
  • Samokhvalov, A. V. Anomalous Josephson Effect in a Planar Hybrid Structure with the Spin–Orbit Coupling. JETP Letters 2024, 119, 511–517. doi:10.1134/s0021364024600411
  • Satariano, R.; Volkov, A. F.; Ahmad, H. G.; Di Palma, L.; Ferraiuolo, R.; Vettoliere, A.; Granata, C.; Montemurro, D.; Parlato, L.; Pepe, G. P.; Tafuri, F.; Ausanio, G.; Massarotti, D. Nanoscale spin ordering and spin screening effects in tunnel ferromagnetic Josephson junctions. Communications Materials 2024, 5. doi:10.1038/s43246-024-00497-1
  • Pintus, P.; Soltani, M.; Moody, G. Cryogenic optical data link for superconducting circuits. Nature Photonics 2024, 18, 306–308. doi:10.1038/s41566-024-01417-y
  • Birge, N. O.; Satchell, N. Ferromagnetic materials for Josephsonπjunctions. APL Materials 2024, 12. doi:10.1063/5.0195229
  • Kalashnikov, D. S.; Ruzhitskiy, V. I.; Shishkin, A. G.; Golovchanskiy, I. A.; Kupriyanov, M. Y.; Soloviev, I. I.; Roditchev, D.; Stolyarov, V. S. Demonstration of a Josephson vortex-based memory cell with microwave energy-efficient readout. Communications Physics 2024, 7. doi:10.1038/s42005-024-01570-4

Patents

  • KIRICHENKO ALEX F; JAFARI-SALIM AMIR; TRUITT PATRICK; KATAM NAVEEN KUMAR; JORDAN CALEB; MUKHANOV OLEG A. System and method of flux bias for superconducting quantum circuits. US 12087503 B2, Sept 10, 2024.
  • TZIMPRAGOS GEORGIOS; VASUDEVAN DILIP; TSISKARIDZE NESTAN; MICHELOGIANNAKIS GEORGIOS; MADHAVAN ADVAIT; VOLK JENNIFER; SHALF JOHN; SHERWOOD TIMOTHY. COMPUTATIONAL TEMPORAL LOGIC FOR SUPERCONDUCTING LOGIC CIRCUIT DESIGN. WO 2021183344 A1, Sept 16, 2021.
  • HERR ANNA Y; HERR QUENTIN P; CLARKE RYAN EDWARD; BRAUN ALEXANDER LOUIS; HEARNE III HAROLD CLIFTON; BURNETT RANDALL M; LEE TIMOTHY CHI-CHAO. SUPERCONDUCTING NON-DESTRUCTIVE READOUT CIRCUITS. EP 3830827 A1, June 9, 2021.
Other Beilstein-Institut Open Science Activities