Cite the Following Article
Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles
Olga Rotan, Katharina N. Severin, Simon Pöpsel, Alexander Peetsch, Melisa Merdanovic, Michael Ehrmann and Matthias Epple
Beilstein J. Nanotechnol. 2017, 8, 381–393.
https://doi.org/10.3762/bjnano.8.40
How to Cite
Rotan, O.; Severin, K. N.; Pöpsel, S.; Peetsch, A.; Merdanovic, M.; Ehrmann, M.; Epple, M. Beilstein J. Nanotechnol. 2017, 8, 381–393. doi:10.3762/bjnano.8.40
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.7 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kostka, K.; Epple, M. Surface Functionalization of Calcium Phosphate Nanoparticles via Click Chemistry: Covalent Attachment of Proteins and Ultrasmall Gold Nanoparticles. Chemistry 2023, 5, 1060–1076. doi:10.3390/chemistry5020072
- Sokolova, V.; Loza, K.; Ebel, J. F.; Buer, J.; Westendorf, A. M.; Epple, M. Barium sulphate microparticles are taken up by three different cell types: HeLa, THP-1, and hMSC. Acta biomaterialia 2023, 164, 577–587. doi:10.1016/j.actbio.2023.03.043
- Kostka, K.; Hosseini, S.; Epple, M. In-Vitro Cell Response to Strontium/Magnesium-Doped Calcium Phosphate Nanoparticles. Micro 2023, 3, 156–171. doi:10.3390/micro3010012
- Lee, J.; Ahn, S. Y.; Le, C. T. T.; Lee, D.-H.; Jung, J.; Ko, E.-J. Protective and vaccine dose-sparing efficacy of Poly I:C-functionalized calcium phosphate nanoparticle adjuvants in inactivated influenza vaccination. International immunopharmacology 2022, 112, 109240. doi:10.1016/j.intimp.2022.109240
- Sokolova, V.; Ebel, J.-F.; Kollenda, S.; Klein, K.; Kruse, B.; Veltkamp, C.; Lange, C. M.; Westendorf, A. M.; Epple, M. Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. Small (Weinheim an der Bergstrasse, Germany) 2022, 18, e2201167. doi:10.1002/smll.202201167
- Wang, M.; Zhou, J.; Tavares, J.; Pinto, C. A.; Saraiva, J. A.; Prieto, M. A.; Cao, H.; Xiao, J.; Simal-Gandara, J.; Barba, F. J. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Critical reviews in food science and nutrition 2022, 63, 8357–8374. doi:10.1080/10408398.2022.2054939
- Sun, Z.; Li, W.; Lenzo, J. C.; Holden, J. A.; McCullough, M. J.; O'Connor, A. J.; O'Brien-Simpson, N. M. The Potential of Calcium Phosphate Nanoparticles as Adjuvants and Vaccine Delivery Vehicles. Frontiers in Materials 2021, 8. doi:10.3389/fmats.2021.788373
- Białas, N.; Müller, E. K.; Epple, M.; Hilger, I. Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials 2021, 276, 121013. doi:10.1016/j.biomaterials.2021.121013
- Sokolova, V.; Epple, M. Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 7471–7488. doi:10.1002/chem.202005257
- Komuro, H.; Yamazoe, M.; Nozaki, K.; Nagai, A.; Sasano, T. Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system. Beilstein journal of nanotechnology 2020, 11, 1685–1692. doi:10.3762/bjnano.11.150
- Kollenda, S.; Kopp, M.; Wens, J.; Koch, J.; Schulze, N.; Papadopoulos, C.; Pöhler, R.; Meyer, H.; Epple, M. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells. Acta biomaterialia 2020, 111, 406–417. doi:10.1016/j.actbio.2020.05.014
- Sethuraman, V.; Janakiraman, K.; Krishnaswami, V.; Natesan, S.; Kandasamy, R. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chemistry and physics of lipids 2019, 224, 104763. doi:10.1016/j.chemphyslip.2019.03.016
- Minchenko, O. H.; Tsymbal, D. O.; Minchenko, D. O.; Prylutska, S.; Hnatiuk, O. S.; Prylutskyy, Y.; Tsierkezos, N. G.; Ritter, U. Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicology in vitro : an international journal published in association with BIBRA 2018, 52, 122–130. doi:10.1016/j.tiv.2018.06.011
- Sokolova, V.; Shi, Z.; Huang, S.; Du, Y.; Kopp, M.; Frede, A.; Knuschke, T.; Buer, J.; Yang, D.; Wu, J.; Westendorf, A. M.; Epple, M. Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta biomaterialia 2017, 64, 401–410. doi:10.1016/j.actbio.2017.09.037
- Kopp, M.; Rotan, O.; Papadopoulos, C.; Schulze, N.; Meyer, H.; Epple, M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PloS one 2017, 12, e0178260. doi:10.1371/journal.pone.0178260
- van der Meer, S. B.; Knuschke, T.; Frede, A.; Schulze, N.; Westendorf, A. M.; Epple, M. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta biomaterialia 2017, 57, 414–425. doi:10.1016/j.actbio.2017.05.049
- Kopp, M.; Kollenda, S.; Epple, M. Nanoparticle–Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry. Accounts of chemical research 2017, 50, 1383–1390. doi:10.1021/acs.accounts.7b00051