Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 208.3 KB | Download |
Cite the Following Article
Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition
Ziyan Warneke, Markus Rohdenburg, Jonas Warneke, Janina Kopyra and Petra Swiderek
Beilstein J. Nanotechnol. 2018, 9, 77–90.
https://doi.org/10.3762/bjnano.9.10
How to Cite
Warneke, Z.; Rohdenburg, M.; Warneke, J.; Kopyra, J.; Swiderek, P. Beilstein J. Nanotechnol. 2018, 9, 77–90. doi:10.3762/bjnano.9.10
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.8 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Boeckers, H.; Rohdenburg, M.; Swiderek, P. Surface science studies on electron-induced reactions of NH3 and their perspectives for enhancing nanofabrication processes. Surface Science 2024, 751, 122628. doi:10.1016/j.susc.2024.122628
- Höflich, K.; Maćkosz, K.; Jureddy, C. S.; Tsarapkin, A.; Utke, I. Direct electron beam writing of silver using a β-diketonate precursor: first insights. Beilstein journal of nanotechnology 2024, 15, 1117–1124. doi:10.3762/bjnano.15.90
- Glessi, C.; Polman, F. A.; Hagen, C. W. Water-assisted purification during electron beam-induced deposition of platinum and gold. Beilstein journal of nanotechnology 2024, 15, 884–896. doi:10.3762/bjnano.15.73
- Boeckers, H.; Chaudhary, A.; Martinović, P.; Walker, A. V.; McElwee-White, L.; Swiderek, P. Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 - effect of MA ligand and process conditions. Beilstein journal of nanotechnology 2024, 15, 500–516. doi:10.3762/bjnano.15.45
- Hari, S.; van Dorp, W. F.; Mulders, J. J. L.; Trompenaars, P. H. F.; Kruit, P.; Hagen, C. W. Sidewall angle tuning in focused electron beam-induced processing. Beilstein journal of nanotechnology 2024, 15, 447–456. doi:10.3762/bjnano.15.40
- Martinović, P.; Barnewitz, L.; Rohdenburg, M.; Swiderek, P. Controlling electron beam induced deposition of iron from Fe(CO)5: Inhibition of autocatalytic growth by NH3 and reactivation by electron irradiation. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0002306
- Seewald, L. M.; Sattelkow, J.; Brugger-Hatzl, M.; Kothleitner, G.; Frerichs, H.; Schwalb, C.; Hummel, S.; Plank, H. 3D Nanoprinting of All-Metal Nanoprobes for Electric AFM Modes. Nanomaterials (Basel, Switzerland) 2022, 12, 4477. doi:10.3390/nano12244477
- Boeckers, H.; Swiderek, P.; Rohdenburg, M. Towards Improved Humidity Sensing Nanomaterials via Combined Electron and NH3 Treatment of Carbon-Rich FEBID Deposits. Nanomaterials (Basel, Switzerland) 2022, 12, 4455. doi:10.3390/nano12244455
- Weitzer, A.; Winkler, R.; Kuhness, D.; Kothleitner, G.; Plank, H. Controlled Morphological Bending of 3D-FEBID Structures via Electron Beam Curing. Nanomaterials (Basel, Switzerland) 2022, 12, 4246. doi:10.3390/nano12234246
- Abdel-Rahman, M. K.; Eckhert, P. M.; Fairbrother, D. H. Ion-Induced Surface Reactions and Deposition of Trimethyl(methylcyclopentadienyl)platinum(IV). The Journal of Physical Chemistry C 2022, 126, 15724–15735. doi:10.1021/acs.jpcc.2c05255
- Lasseter, J.; Rack, P. D.; Randolph, S. J. Selected Area Deposition of PtCx Nanostructures: Implications for Functional Coatings of 3D Nanoarchitectures. ACS Applied Nano Materials 2022, 5, 10890–10899. doi:10.1021/acsanm.2c02182
- Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
- Shih, P.-Y.; Tafrishi, R.; Cipriani, M.; Hermanns, C. F.; Oster, J.; Gölzhäuser, A.; Edinger, K.; Ingólfsson, O. Dissociative ionization and electron beam induced deposition of tetrakis(dimethylamino)silane, a precursor for silicon nitride deposition. Physical chemistry chemical physics : PCCP 2022, 24, 9564–9575. doi:10.1039/d2cp00257d
- Huth, M.; Porrati, F.; Barth, S. Living up to its potential—Direct-write nanofabrication with focused electron beams. Journal of Applied Physics 2021, 130, 170901. doi:10.1063/5.0064764
- Yu, J.-C.; Abdel-Rahman, M. K.; Fairbrother, D. H.; McElwee-White, L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS applied materials & interfaces 2021, 13, 48333–48348. doi:10.1021/acsami.1c12327
- Lengyel, J.; Pysanenko, A.; Swiderek, P.; Heiz, U.; Fárník, M.; Fedor, J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. The journal of physical chemistry. A 2021, 125, 1919–1926. doi:10.1021/acs.jpca.1c00135
- Kuhness, D.; Gruber, A.; Winkler, R.; Sattelkow, J.; Fitzek, H. M.; Letofsky-Papst, I.; Kothleitner, G.; Plank, H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS applied materials & interfaces 2020, 13, 1178–1191. doi:10.1021/acsami.0c17030
- Mahgoub, A.; Lu, H.; Thorman, R. M.; Preradovic, K.; Jurca, T.; McElwee-White, L.; Fairbrother, H.; Hagen, C. W. Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2. Beilstein journal of nanotechnology 2020, 11, 1789–1800. doi:10.3762/bjnano.11.161
- Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
- Rohdenburg, M.; Fröch, J. E.; Martinović, P.; Lobo, C. J.; Swiderek, P. Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition. Micromachines 2020, 11, 769. doi:10.3390/mi11080769