Cite the Following Article
Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane
Nor Fazila Khairudin, Mohd Farid Fahmi Sukri, Mehrnoush Khavarian and Abdul Rahman Mohamed
Beilstein J. Nanotechnol. 2018, 9, 1162–1183.
https://doi.org/10.3762/bjnano.9.108
How to Cite
Khairudin, N. F.; Sukri, M. F. F.; Khavarian, M.; Mohamed, A. R. Beilstein J. Nanotechnol. 2018, 9, 1162–1183. doi:10.3762/bjnano.9.108
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Zhang, W.; Zhao, H.; Song, H.; Chou, L. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Chemistry, an Asian journal 2024, 19, e202400503. doi:10.1002/asia.202400503
- Velisoju, V. K.; Virpurwala, Q. J. S.; Attada, Y.; Bai, X.; Davaasuren, B.; Ben Hassine, M.; Yao, X.; Lezcano, G.; Kulkarni, S. R.; Castano, P. Overcoming the kinetic and deactivation limitations of Ni catalyst by alloying it with Zn for the dry reforming of methane. Journal of CO2 Utilization 2023, 75, 102573. doi:10.1016/j.jcou.2023.102573
- Rosli, S. N. A.; Othman, N. H.; Nguyen, V. C.; Zainal Abidin, S. Synergistic Syngas Production: Needleless Electrospinning Synthesis of Co/CeO2–La2O3 Catalyst for Efficient Dry Reforming of Methane. Chemical Engineering & Technology 2023, 46, 2568–2576. doi:10.1002/ceat.202300151
- Nishchakova, A. D.; Bulusheva, L. G.; Bulushev, D. A. Supported Ni Single-Atom Catalysts: Synthesis, Structure, and Applications in Thermocatalytic Reactions. Catalysts 2023, 13, 845. doi:10.3390/catal13050845
- Alhajri, N.; Albuali, M. Alumina Supported Nickel-iron-ruthenium based Catalyst for Dry Reforming of Methane. Current Catalysis 2022, 11, 57–64. doi:10.2174/2211544711666220328130026
- Yusuf, M.; Farooqi, A. S.; Al-Kahtani, A. A.; Ubaidullah, M.; Alam, M. A.; Keong, L. K.; Hellgardt, K.; Abdullah, B. Syngas production from greenhouse gases using Ni–W bimetallic catalyst via dry methane reforming: Effect of W addition. International Journal of Hydrogen Energy 2021, 46, 27044–27061. doi:10.1016/j.ijhydene.2021.05.186
- Yusuf, M.; Farooqi, A. S.; Alam, M. A.; Keong, L. K.; Hellgardt, K.; Abdullah, B. Performance of Ni/Al2O3-MgO catalyst for Dry Reforming of Methane: Effect of preparation routes. IOP Conference Series: Materials Science and Engineering 2021, 1092, 012069. doi:10.1088/1757-899x/1092/1/012069
- Shahed, G. V.; Taherian, Z.; Khataee, A.; Meshkani, F.; Orooji, Y. Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH4 process. Journal of Industrial and Engineering Chemistry 2020, 86, 73–80. doi:10.1016/j.jiec.2020.02.012
- Zhang, F.; Liu, Z.; Chen, X.; Rui, N.; Betancourt, L. E.; Lin, L.; Xu, W.; Sun, C.-J.; Abeykoon, A. M. M.; Rodriguez, J. A.; Teržan, J.; Lorber, K.; Djinović, P.; Senanayake, S. D. Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catalysis 2020, 10, 3274–3284. doi:10.1021/acscatal.9b04451
- Xanthopoulou, G.; Karanasios, K.; Tungatarova, S.; Baizhumanova, T.; Zhumabek, M.; Kaumenova, G.; Massalimova, B.; Shorayeva, K. Catalytic methane reforming into synthesis gas over developed composite materials prepared by combustion synthesis. Reaction Kinetics, Mechanisms and Catalysis 2019, 126, 645–661. doi:10.1007/s11144-019-01541-9
- Tan, R. S. Ph.D. Thesis, Jan 1, 2019.