Andreev spectrum and supercurrents in nanowire-based SNS junctions containing Majorana bound states

Jorge Cayao, Annica M. Black-Schaffer, Elsa Prada and Ramón Aguado
Beilstein J. Nanotechnol. 2018, 9, 1339–1357. https://doi.org/10.3762/bjnano.9.127

Supporting Information

Supporting Information File 1: Majorana wavefunction and charge density in SNS junctions.
Format: PDF Size: 1.9 MB Download

Cite the Following Article

Andreev spectrum and supercurrents in nanowire-based SNS junctions containing Majorana bound states
Jorge Cayao, Annica M. Black-Schaffer, Elsa Prada and Ramón Aguado
Beilstein J. Nanotechnol. 2018, 9, 1339–1357. https://doi.org/10.3762/bjnano.9.127

How to Cite

Cayao, J.; Black-Schaffer, A. M.; Prada, E.; Aguado, R. Beilstein J. Nanotechnol. 2018, 9, 1339–1357. doi:10.3762/bjnano.9.127

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 398.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cayao, J.; Sato, M. Non-Hermitian phase-biased Josephson junctions. Physical Review B 2024, 110. doi:10.1103/physrevb.110.l201403
  • Awoga, O. A.; Cayao, J. Identifying trivial and Majorana zero-energy modes using the Majorana polarization. Physical Review B 2024, 110. doi:10.1103/physrevb.110.165404
  • Liu, Z.; Huang, L.; Wang, J. Josephson diode effect in topological superconductors. Physical Review B 2024, 110. doi:10.1103/physrevb.110.014519
  • Tanaka, Y.; Tamura, S.; Cayao, J. Theory of Majorana Zero Modes in Unconventional Superconductors. Progress of Theoretical and Experimental Physics 2024, 2024. doi:10.1093/ptep/ptae065
  • Cayao, J.; Nagaosa, N.; Tanaka, Y. Enhancing the Josephson diode effect with Majorana bound states. Physical Review B 2024, 109. doi:10.1103/physrevb.109.l081405
  • Pino, D. M.; Souto, R. S.; Aguado, R. Minimal Kitaev-transmon qubit based on double quantum dots. Physical Review B 2024, 109. doi:10.1103/physrevb.109.075101
  • Giavaras, G.; Aguado, R. Flux-tunable supercurrent in full-shell nanowire Josephson junctions. Physical Review B 2024, 109. doi:10.1103/physrevb.109.024509
  • Legg, H. F.; Laubscher, K.; Loss, D.; Klinovaja, J. Parity-protected superconducting diode effect in topological Josephson junctions. Physical Review B 2023, 108. doi:10.1103/physrevb.108.214520
  • Arouca, R.; Cayao, J.; Black-Schaffer, A. M. Topological superconductivity enhanced by exceptional points. Physical Review B 2023, 108. doi:10.1103/physrevb.108.l060506
  • Levajac, V.; Mazur, G. P.; van Loo, N.; Borsoi, F.; Badawy, G.; Gazibegovic, S.; Bakkers, E. P. A. M.; Heedt, S.; Kouwenhoven, L. P.; Wang, J.-Y. Impact of Junction Length on Supercurrent Resilience against Magnetic Field in InSb-Al Nanowire Josephson Junctions. Nano letters 2023, 23, 4716–4722. doi:10.1021/acs.nanolett.2c04485
  • Baldo, L.; Dias Da Silva, L. G. G. V.; Black-Schaffer, A. M.; Cayao, J. Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions. Superconductor Science and Technology 2023, 36, 34003–034003. doi:10.1088/1361-6668/acb670
  • Marra, P. Majorana nanowires for topological quantum computation. Journal of Applied Physics 2022, 132. doi:10.1063/5.0102999
  • Ren, J.-T.; Ke, S.-S.; Guo, Y.; Zhang, H.-W.; Lü, H.-F. Signatures of the long-range phase transition in topological Josephson junctions. Physical Review B 2022, 106. doi:10.1103/physrevb.106.165428
  • He, J.; Li, J.-R.; Zhang, L.-L.; Zhang, S.-F.; Gong, W.-J. Disorder-independent topological superconductor realized by antiferromagnetic Rashba nanowires with superconducting proximity effect. The European Physical Journal Plus 2022, 137. doi:10.1140/epjp/s13360-022-03072-0
  • Zou, W.-K.; Wang, Q.; Zhao, H.-K. Shot noise of photonic heat transport through an oscillation device modulated by Majorana fermions. Annals of Physics 2022, 443, 169007. doi:10.1016/j.aop.2022.169007
  • Li, J.-R.; Zhang, S.-F.; Zhang, L.-L.; Cui, W.-B.; Gong, W.-J. Majorana zero mode in the nanowire induced by the gradually changed magnetic field. The European Physical Journal Plus 2022, 137. doi:10.1140/epjp/s13360-022-02859-5
  • Li, X.-Q.; Feng, W.; Qin, L.; Jin, J. Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports. Science China Physics, Mechanics & Astronomy 2022, 65. doi:10.1007/s11433-021-1811-6
  • Ray, A. B.; Sau, J. D.; Mandal, I. Symmetry-breaking signatures of multiple Majorana zero modes in one-dimensional spin-triplet superconductors. Physical Review B 2021, 104, 104513. doi:10.1103/physrevb.104.104513
  • Duse, C.; Sriram, P.; Gharavi, K.; Baugh, J.; Muralidharan, B. Role of dephasing on the conductance signatures of Majorana zero modes. Journal of physics. Condensed matter : an Institute of Physics journal 2021, 33, 365301. doi:10.1088/1361-648x/ac0d16
  • Cayao, J.; Black-Schaffer, A. M. Distinguishing trivial and topological zero-energy states in long nanowire junctions. Physical Review B 2021, 104. doi:10.1103/physrevb.104.l020501
Other Beilstein-Institut Open Science Activities