Cite the Following Article
Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction
Juan L. Palma, Alejandro Pereira, Raquel Álvaro, José Miguel García-Martín and Juan Escrig
Beilstein J. Nanotechnol. 2018, 9, 1728–1734.
https://doi.org/10.3762/bjnano.9.164
How to Cite
Palma, J. L.; Pereira, A.; Álvaro, R.; García-Martín, J. M.; Escrig, J. Beilstein J. Nanotechnol. 2018, 9, 1728–1734. doi:10.3762/bjnano.9.164
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 383.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Molaei, M. J. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. Journal of biomaterials applications 2024, 39, 3–23. doi:10.1177/08853282241244707
- Jussila, T.; Philip, A.; Tripathi, T.; Nielsch, K.; Karppinen, M. Atomic layer deposition of magnetic thin films: Basic processes, engineering efforts, and road forward. Applied Physics Reviews 2023, 10. doi:10.1063/5.0172732
- Belim, S. V.; Bychkov, I. V. A Study of Magnetic Properties in a 2D Ferromagnetic Nanolattice through Computer Simulation. Nanomaterials (Basel, Switzerland) 2022, 12, 3705. doi:10.3390/nano12203705
- Belim, S.; Belim, S.; Tikhomirov, I.; Bychkov, I. Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice. Coatings 2022, 12, 1526. doi:10.3390/coatings12101526
- Márquez, P.; Patiño Vidal, C.; Pereira, A.; Vivas, L.; Palma, J. L.; López de Dicastillo, C.; Escrig, J. Hollow Iron Oxide Nanospheres Obtained through a Combination of Atomic Layer Deposition and Electrospraying Technologies. Nanomaterials (Basel, Switzerland) 2022, 12, 3180. doi:10.3390/nano12183180
- Júnior, J. W. N.; Monção, R. M.; Bandeira, R. M.; dos Santos Júnior, J. R.; Araujo, J. F.; Moura, J.; Lima, L. B. S.; Santos, F.; da Luz Lima, C.; de Carvalho Costa, T. H.; de Sousa, R. R. M. Growth of α-Fe2O3 thin films by plasma deposition: Studies of structural, morphological, electrochemical, and thermal-optical properties. Thin Solid Films 2021, 736, 138919. doi:10.1016/j.tsf.2021.138919
- Márquez, P.; Alburquenque, D.; Celis, F.; Freire, R. M.; Escrig, J. Structural, morphological and magnetic properties of iron oxide thin films obtained by atomic layer deposition as a function of their thickness. Journal of Magnetism and Magnetic Materials 2021, 530, 167914. doi:10.1016/j.jmmm.2021.167914
- Kaidatzis, A.; del Real, R. P.; Alvaro, R.; Niarchos, D.; Vázquez, M.; García-Martín, J. M. Nanopatterned hard/soft bilayer magnetic antidot arrays with long-range periodicity. Journal of Magnetism and Magnetic Materials 2020, 498, 166142. doi:10.1016/j.jmmm.2019.166142
- Salaheldeen, M.; Méndez, M.; Vega, V.; Fernández, A. F.; Prida, V. M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. ACS Applied Nano Materials 2019, 2, 1866–1875. doi:10.1021/acsanm.8b02205
- Zhang, L.; Zhou, Z.; Zhang, Y.; Peng, B.; Ren, W.; Ye, Z.-G.; Liu, M. Tuning the Magnetic Anisotropy of Fe 3 O 4 /Pt Heterostructures Fabricated by Atomic Layer Deposition With $In~Situ$ Magnetic Field. IEEE Transactions on Magnetics 2019, 55, 1–7. doi:10.1109/tmag.2018.2883191