Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy

Alexey D. Bolshakov, Alexey M. Mozharov, Georgiy A. Sapunov, Igor V. Shtrom, Nickolay V. Sibirev, Vladimir V. Fedorov, Evgeniy V. Ubyivovk, Maria Tchernycheva, George E. Cirlin and Ivan S. Mukhin
Beilstein J. Nanotechnol. 2018, 9, 146–154. https://doi.org/10.3762/bjnano.9.17

Cite the Following Article

Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy
Alexey D. Bolshakov, Alexey M. Mozharov, Georgiy A. Sapunov, Igor V. Shtrom, Nickolay V. Sibirev, Vladimir V. Fedorov, Evgeniy V. Ubyivovk, Maria Tchernycheva, George E. Cirlin and Ivan S. Mukhin
Beilstein J. Nanotechnol. 2018, 9, 146–154. https://doi.org/10.3762/bjnano.9.17

How to Cite

Bolshakov, A. D.; Mozharov, A. M.; Sapunov, G. A.; Shtrom, I. V.; Sibirev, N. V.; Fedorov, V. V.; Ubyivovk, E. V.; Tchernycheva, M.; Cirlin, G. E.; Mukhin, I. S. Beilstein J. Nanotechnol. 2018, 9, 146–154. doi:10.3762/bjnano.9.17

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 679.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Shugurov, K. Y.; Mozharov, A. M.; Sapunov, G. A.; Fedorov, V. V.; Moiseev, E. I.; Blokhin, S. A.; Kuzmenkov, A. G.; Mukhin, I. S. Microwave Schottky Diodes based on Single GaN Nanowires. Technical Physics Letters 2023, 49, S346–S349. doi:10.1134/s1063785023010315
  • Shugurov, K. Y.; Mozharov, A. M.; Fedorov, V. V.; Blokhin, S. A.; Neplokh, V. V.; Mukhin, I. S. Extremely high frequency Schottky diodes based on single GaN nanowires. Nanotechnology 2023, 34, 245204. doi:10.1088/1361-6528/acc4cb
  • Dvoretckaia, L.; Gridchin, V.; Mozharov, A.; Maksimova, A.; Dragunova, A.; Melnichenko, I.; Mitin, D.; Vinogradov, A.; Mukhin, I.; Cirlin, G. Light-Emitting Diodes Based on InGaN/GaN Nanowires on Microsphere-Lithography-Patterned Si Substrates. Nanomaterials (Basel, Switzerland) 2022, 12, 1993. doi:10.3390/nano12121993
  • Wang, T.; Wang, Z.-W.; Zhang, Y.; Yang, X.-T.; Zhu, Y.-Z.; Wang, H.-F. Porous Ga 2 O 3 Nanotubes Derived from Urease‐Mediated Interfacially‐Grown NH 4 Ga(OH) 2 CO 3 for High‐Efficient Hydrogen Evolution. Small (Weinheim an der Bergstrasse, Germany) 2021, 17, 2104195. doi:10.1002/smll.202104195
  • Pavlov, A. K.; Mozharov, A. M.; Berdnikov, Y.; Barbier, C.; Harmand, J.-C.; Tchernycheva, M.; Polozkov, R. G.; Mukhin, I. Crystal polarity discrimination for GaN nanowires on graphene. Journal of Materials Chemistry C 2021, 9, 9997–10004. doi:10.1039/d1tc02710g
  • Reddeppa, M.; Park, B.-G.; Pasupuleti, K. S.; Nam, D.-J.; Kim, S.-G.; Oh, J.-E.; Kim, M.-D. Current-voltage characteristics and deep-level study of GaN nanorod Schottky-diode-based photodetector. Semiconductor Science and Technology 2021, 36, 035010. doi:10.1088/1361-6641/abda62
  • Kondratev, V. M.; Bolshakov, A. D.; Nalimova, S. S. Technologically Feasible ZnO Nanostructures for Carbon Monoxide Gas Sensing. In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), IEEE, 2021; pp 1163–1166. doi:10.1109/elconrus51938.2021.9396573
  • Daudin, B.; Siladie, A.-M.; Gruart, M.; Hertog, M. D.; Bougerol, C.; Haas, B.; Rouvière, J.-L.; Robin, E.; Recio-Carretero, M.-J.; Garro, N.; Cros, A. The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes. Nanotechnology 2020, 32, 085606. doi:10.1088/1361-6528/abc780
  • Saket, O.; Wang, J.; Amador-Mendez, N.; Morassi, M.; Kunti, A.; Bayle, F.; Collin, S.; Jollivet, A.; Babichev, A. V.; Sodhi, T.; Harmand, J.-C.; Julien, F. H.; Gogneau, N.; Tchernycheva, M. Investigation of the effect of the doping order in GaN nanowire p-n junctions grown by molecular-beam epitaxy. Nanotechnology 2020, 32, 085705. doi:10.1088/1361-6528/abc91a
  • Kochetkov, F. M.; Neplokh, V.; Fedorov, V. V.; Bolshakov, A. D.; Sharov, V. A.; Eliseev, I. E.; Tchernycheva, M.; Cirlin, G. E.; Nasibulin, A. G.; Islamova, R. M.; Mukhin, I. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology 2020, 31, 46LT01. doi:10.1088/1361-6528/abae98
  • Maraj, M.; Nabi, G.; Usman, K.; Wang, E.; Wei, W.; Wang, Y.; Sun, W. High Quality Growth of Cobalt Doped GaN Nanowires with Enhanced Ferromagnetic and Optical Response. Materials (Basel, Switzerland) 2020, 13, 3537. doi:10.3390/ma13163537
  • Shugurov, K. Y.; Mozharov, A. M.; Bolshakov, A. D.; Fedorov, V. V.; Uvarov, A. V.; Kudryashov, D. A.; Mikhailovskii, V. Y.; Cirlin, G. E.; Mukhin, I. GaN nanowires/ p-Si interface passivation by hydrogen plasma treatment. Journal of Physics: Conference Series 2020, 1537, 012012. doi:10.1088/1742-6596/1537/1/012012
  • Dvoretckaia, L. N.; Bolshakov, A. D.; Mozharov, A. M.; Sobolev, M. S.; Kirilenko, D. A.; Baranov, A.; Mikhailovskii, V.; Neplokh, V.; Morozov, I. A.; Fedorov, V. V.; Mukhin, I. GaNP-based photovoltaic device integrated on Si substrate. Solar Energy Materials and Solar Cells 2020, 206, 110282. doi:10.1016/j.solmat.2019.110282
  • Shugurov, K. Y.; Mozharov, A. M.; Bolshakov, A. D.; Fedorov, V. V.; Sapunov, G. A.; Shtrom, I.; Uvarov, A. V.; Kudryashov, D. A.; Baranov, A.; Mikhailovskii, V. Y.; Neplokh, V.; Tchernycheva, M.; Cirlin, G. E.; Mukhin, I. Hydrogen passivation of the n-GaN nanowire/p-Si heterointerface. Nanotechnology 2020, 31, 244003. doi:10.1088/1361-6528/ab76f2
  • Santos, A. J.; Lacroix, B.; Blanco, E.; Hurand, S.; Gómez, V. J.; Paumier, F.; Girardeau, T.; Huffaker, D. L.; García, R.; Morales, F. M. Simultaneous Optical and Electrical Characterization of GaN Nanowire Arrays by Means of Vis-IR Spectroscopic Ellipsometry. The Journal of Physical Chemistry C 2019, 124, 1535–1543. doi:10.1021/acs.jpcc.9b10556
  • Wu, S.; Wu, S.; Song, W.; Wang, L.; Yi, X.; Liu, Z.; Wang, J.; Li, J. Crystal phase evolution in kinked GaN nanowires. Nanotechnology 2019, 31, 145713. doi:10.1088/1361-6528/ab6479
  • Sapunov, G. A.; Fedorov, V. V.; Koval, O. Y.; Sharov, V. A.; Dvoretckaia, L. N.; Mukhin, I.; Bolshakov, A. D. Synthesis and Optical Characterization of GaAs Epitaxial Nanoparticles on Silicon. Crystal Growth & Design 2019, 20, 300–306. doi:10.1021/acs.cgd.9b01203
  • Sapunov, G. A.; Koval, O. Y.; Sharov, V. A.; Dvoretckaia, L. N.; Mitin, D. M.; Bolshakov, A. D. Synthesis and optical properties study of GaAs epitaxial nanoparticles on silicon. Journal of Physics: Conference Series 2019, 1400, 055038. doi:10.1088/1742-6596/1400/5/055038
  • Koval, O. Y.; Sapunov, G. A.; Fedorov, V. V.; Mukhin, I. Growth and optical properties of GaPN/GaP heterostructure nanowire array. Journal of Physics: Conference Series 2019, 1400, 055036. doi:10.1088/1742-6596/1400/5/055036
  • Bolshakov, A. D.; Fedorov, V. V.; Sibirev, N. V.; Fetisova, M.; Moiseev, E.; Kryzhanovskaya, N. V.; Koval, O. Y.; Ubyivovk, E.; Mozharov, A. M.; Cirlin, G. E.; Mukhin, I. Growth and Characterization of GaP/GaPAs Nanowire Heterostructures with Controllable Composition. physica status solidi (RRL) – Rapid Research Letters 2019, 13, 1900350. doi:10.1002/pssr.201900350
Other Beilstein-Institut Open Science Activities