Supporting Information
Imaging speed: 0.5 s/frame, 10 × 5 nm2, 500 × 250 pix2. Three images were selected and are shown in Figure 9a.
Supporting Information File 1: Successive FM-AFM images of calcite surface obtained in water. | ||
Format: MP4 | Size: 24.5 MB | Download |
Cite the Following Article
Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy
Kazuki Miyata and Takeshi Fukuma
Beilstein J. Nanotechnol. 2018, 9, 1844–1855.
https://doi.org/10.3762/bjnano.9.176
How to Cite
Miyata, K.; Fukuma, T. Beilstein J. Nanotechnol. 2018, 9, 1844–1855. doi:10.3762/bjnano.9.176
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 817.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Miyata, K.; Adachi, K.; Miyashita, N.; Miyazawa, K.; Foster, A. S.; Fukuma, T. High-Speed Three-Dimensional Scanning Force Microscopy Visualization of Subnanoscale Hydration Structures on Dissolving Calcite Step Edges. Nano letters 2024, 24, 10842–10849. doi:10.1021/acs.nanolett.4c02368
- Yang, C.; Dang, C.-Q.; Zhu, W.-L.; Ju, B.-F. High-speed atomic force microscopy in ultra-precision surface machining and measurement: challenges, solutions and opportunities. Surface Science and Technology 2023, 1. doi:10.1007/s44251-023-00006-5
- Miyata, K.; Kawagoe, Y.; Miyashita, N.; Nakagawa, T.; Fukuma, T. Atomic-scale structures and dynamics at the growing calcite step edge investigated by high-speed frequency modulation atomic force microscopy. Faraday discussions 2022, 235, 551–561. doi:10.1039/d1fd00084e
- Wang, C.; Li, Y.; Lin, R.; Cheng, P.; Xu, Z.; Qian, J.; Dou, Z.; Wang, J.; Li, L. A novel amplitude and frequency demodulation algorithm for frequency-modulation atomic force microscope. Measurement Science and Technology 2021, 32, 125001. doi:10.1088/1361-6501/ac1b42
- Miyata, K.; Takeuchi, K.; Kawagoe, Y.; Spijker, P.; Tracey, J.; Foster, A. S.; Fukuma, T. High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits. The journal of physical chemistry letters 2021, 12, 8039–8045. doi:10.1021/acs.jpclett.1c02088
- Fukuma, T. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Microscopy (Oxford, England) 2020, 69, 340–349. doi:10.1093/jmicro/dfaa045
- Emilienne, L.; Zhang, J.; Rodrigue, D. N. S. Research on V2G Participating in Power System Frequency Control. In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), IEEE, 2019; pp 230–234. doi:10.1109/sege.2019.8859938
- Miyata, K.; Kawagoe, Y.; Tracey, J.; Miyazawa, K.; Foster, A. S.; Fukuma, T. Variations in Atomic-Scale Step Edge Structures andDynamics of Dissolving Calcite in Water Revealed by High-Speed FrequencyModulation Atomic Force Microscopy. The Journal of Physical Chemistry C 2019, 123, 19786–19793. doi:10.1021/acs.jpcc.9b05788
- Koskin, E.; Bisiaux, P.; Galayko, D.; Blokhina, E. NEWCAS - All-Digital Phase-Locked Loop Arrays: Investigation of Synchronisation and Jitter Performance through FPGA Prototyping. In 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS), IEEE, 2019; pp 1–4. doi:10.1109/newcas44328.2019.8961269
- Wagner, T. Steady-state and transient behavior in dynamic atomic force microscopy. Journal of Applied Physics 2019, 125, 044301. doi:10.1063/1.5078954
Patents
- OGAWA JUNYA; MATSUI KATSUAKI. Semiconductor device. US 11728815 B2, Aug 15, 2023.
- OGAWA JUNYA; MATSUI KATSUAKI. SEMICONDUCTOR DEVICE. US 20220085818 A1, March 17, 2022.