Supporting Information
The Supporting Information File 1 provides some details about:
a) The Hf crystallite size estimation with Scherrer equation.
b) The experiment for testing the charge of Hf NPs.
c) The nanoidentation load-unload curves of the Hf NTFs.
d) The application of the method of Ramakrishnan–Arunachalam in order to estimate the porosity of the Hf NTFs.
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 294.3 KB | Download |
Cite the Following Article
Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition
Irini Michelakaki, Nikos Boukos, Dimitrios A. Dragatogiannis, Spyros Stathopoulos, Costas A. Charitidis and Dimitris Tsoukalas
Beilstein J. Nanotechnol. 2018, 9, 1868–1880.
https://doi.org/10.3762/bjnano.9.179
How to Cite
Michelakaki, I.; Boukos, N.; Dragatogiannis, D. A.; Stathopoulos, S.; Charitidis, C. A.; Tsoukalas, D. Beilstein J. Nanotechnol. 2018, 9, 1868–1880. doi:10.3762/bjnano.9.179
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 379.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Utazi, E. B.; Oyewole, O. A.; Yakubu, J. G.; Yetu, T. P.; Omoregie, I. P.; Adetunji, C. O.; Mathew, J. T.; Igiku, V.; Eniola, K. I. T.; Yerima, M. B. doi:10.1002/9781394234769.ch63
- Utazi, E. B.; Oyewole, O. A.; Yakubu, J. G.; Yetu, T. P.; Omoregie, I. P.; Adetunji, C. O.; Mathew, J. T.; Igiku, V.; Eniola, K. I. T.; Yerima, M. B. doi:10.1002/9781394211548.ch8
- Faden, L.-P.; Reiß, A.; Popescu, R.; Donsbach, C.; Göttlicher, J.; Vitova, T.; Gerthsen, D.; Feldmann, C. Sc, Zr, Hf, and Mn Metal Nanoparticles: Reactive Starting Materials for Synthesis Near Room Temperature. Inorganic chemistry 2024, 63, 1020–1034. doi:10.1021/acs.inorgchem.3c03074
- Scarabelli, L.; Sun, M.; Zhuo, X.; Yoo, S.; Millstone, J. E.; Jones, M. R.; Liz-Marzán, L. M. Plate-Like Colloidal Metal Nanoparticles. Chemical reviews 2023, 123, 3493–3542. doi:10.1021/acs.chemrev.3c00033
- Nersisyan, H. H.; Woo, H. Y.; Ri, V.; Thanh-Nam, H.; Moon, F.; MacDonald, A.; Earner, N.; Lee, J.-H. Hf metal powder synthesis via a chemically activated combustion-reduction process. Materials Chemistry and Physics 2021, 263, 124417. doi:10.1016/j.matchemphys.2021.124417
- Jose, P. A.; Sankarganesh, M.; Raja, J. D.; Senthilkumar, G. Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluation. Journal of Molecular Liquids 2020, 305, 112821. doi:10.1016/j.molliq.2020.112821
- Hong, J.; Murphy, A. B.; Ashford, B.; Cullen, P. J.; Belmonte, T.; Ostrikov, K. Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Reviews of Modern Plasma Physics 2020, 4, 1–60. doi:10.1007/s41614-019-0039-8
- Bag, S.; Baksi, A.; Wang, D.; Kruk, R.; Benel, C.; Chellali, M. R.; Hahn, H. Combination of pulsed laser ablation and inert gas condensation for the synthesis of nanostructured nanocrystalline, amorphous and composite materials. Nanoscale advances 2019, 1, 4513–4521. doi:10.1039/c9na00533a
- Knabl, F.; Gutnik, D.; Patil, P.; Bandl, C.; Vermeij, T.; Pichler, C. M.; Putz, B.; Mitterer, C. Enhancement of copper nanoparticle yield in magnetron sputter inert gas condensation by applying substrate bias voltage and its influence on thin film morphology. Vacuum 230, 113724. doi:10.1016/j.vacuum.2024.113724