Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

Marvin Siebels, Lukas Mai, Laura Schmolke, Kai Schütte, Juri Barthel, Junpei Yue, Jörg Thomas, Bernd M. Smarsly, Anjana Devi, Roland A. Fischer and Christoph Janiak
Beilstein J. Nanotechnol. 2018, 9, 1881–1894. https://doi.org/10.3762/bjnano.9.180

Supporting Information

Supporting Information contains: thermogravimetric analysis, TGA of rare-earth metal amidinates and Eu(dpm)3, structural formulas of the ionic liquids (ILs) and propylene carbonate (PC), TEM images, particle size histogram, PXRD, SAED, EDX and XPS of REF3-NPs, TEM images, particle size histogram, SAED, EDX and XPS of Er-NPs in [BMIm][NTf2], TEM images, particle size histogram, SAED, EDX and XPS of RE-NPs in PC.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 1.6 MB Download

Cite the Following Article

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate
Marvin Siebels, Lukas Mai, Laura Schmolke, Kai Schütte, Juri Barthel, Junpei Yue, Jörg Thomas, Bernd M. Smarsly, Anjana Devi, Roland A. Fischer and Christoph Janiak
Beilstein J. Nanotechnol. 2018, 9, 1881–1894. https://doi.org/10.3762/bjnano.9.180

How to Cite

Siebels, M.; Mai, L.; Schmolke, L.; Schütte, K.; Barthel, J.; Yue, J.; Thomas, J.; Smarsly, B. M.; Devi, A.; Fischer, R. A.; Janiak, C. Beilstein J. Nanotechnol. 2018, 9, 1881–1894. doi:10.3762/bjnano.9.180

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 214.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rademacher, L.; Beglau, T. H. Y.; Ali, B.; Sondermann, L.; Strothmann, T.; Boldog, I.; Barthel, J.; Janiak, C. Ruthenium nanoparticles on covalent triazine frameworks incorporating thiophene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A 2024, 12, 2093–2109. doi:10.1039/d3ta05597c
  • Ding, P.; Braim, M.; Hobson, A. L.; Rochford, L. A.; Ryan, P. T. P.; Duncan, D. A.; Lee, T.-L.; Hussain, H.; Costantini, G.; Yu, M.; Woodruff, D. P. Does F4TCNQ Adsorption on Cu(111) Form a 2D-MOF?. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 20903–20910. doi:10.1021/acs.jpcc.3c04927
  • Akiyoshi, K.; Watanabe, Y.; Kameyama, T.; Kawawaki, T.; Negishi, Y.; Kuwabata, S.; Torimoto, T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Physical chemistry chemical physics : PCCP 2022, 24, 24335–24344. doi:10.1039/d2cp01461k
  • Alagumalai, K.; Shanmugam, R.; Chen, T.-W.; Chen, S.-M.; Balamurugan, M.; Choi, S.; Ali, M.; Al-Mohaimeed, A.; Fan, C.-H. The electrochemical evaluation of antipsychotic drug (promethazine) in biological and environmental samples through samarium cobalt oxide nanoparticles. Materials Today Chemistry 2022, 25, 100961. doi:10.1016/j.mtchem.2022.100961
  • Rademacher, L.; Beglau, T. H. Y.; Heinen, T.; Barthel, J.; Janiak, C. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Frontiers in chemistry 2022, 10, 945261. doi:10.3389/fchem.2022.945261
  • Simon, I.; Haiduk, Y. S.; Mülhaupt, R.; Pankov, V.; Janiak, C. Selected gas response measurements using reduced graphene oxide decorated with nickel nanoparticles. Nano Materials Science 2021, 3, 412–419. doi:10.1016/j.nanoms.2021.03.004
  • Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angewandte Chemie 2021, 133, 22320–22338. doi:10.1002/ange.202104035
  • Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie (International ed. in English) 2021, 60, 22148–22165. doi:10.1002/anie.202104035
  • Bents, A.; Gerdes, J. M.; Hansen, M. R.; Jüstel, T.; Baur, F. A Novel Synthesis Pathway Towards Rare Earth Fluorides by Using Liquid and Solid State Hexafluorophosphate Salts. Journal of The Electrochemical Society 2021, 168, 036502. doi:10.1149/1945-7111/abe8bc
  • Arlt, S.; Bläsing, K.; Harloff, J.; Laatz, K. C.; Michalik, D.; Nier, S.; Schulz, A.; Stoer, P.; Stoffers, A.; Villinger, A. Pseudohalogen Chemistry in Ionic Liquids with Non-innocent Cations and Anions. ChemistryOpen 2020, 10, 62–71. doi:10.1002/open.202000252
  • Klauke, K.; Schmitz, A.; Swertz, A.-C.; Beele, B. B.; Giesen, B.; Schlüsener, C.; Janiak, C.; Mohr, F. Acylselenoureato bis(chelates) of lead: synthesis, structural characterization and microwave-assisted formation of PbSe nano- and microstructures. New Journal of Chemistry 2020, 44, 7719–7726. doi:10.1039/d0nj01433h
  • Schmitz, A.; Meyer, H.; Meischein, M.; Manjón, A. G.; Schmolke, L.; Giesen, B.; Schlüsener, C.; Simon, P.; Grin, Y.; Fischer, R. A.; Scheu, C.; Ludwig, A.; Janiak, C. Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC advances 2020, 10, 12891–12899. doi:10.1039/d0ra01111h
  • Maciejewska, K.; Poźniak, B.; Tikhomirov, M.; Kobylinska, A.; Marciniak, L. Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn2+, Eu3+ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range. Nanomaterials (Basel, Switzerland) 2020, 10, 421. doi:10.3390/nano10030421
  • Manjum, M.; Serizawa, N.; Ispas, A.; Bund, A.; Katayama, Y. Electrochemical Preparation of Cobalt-Samarium Nanoparticles in an Aprotic Ionic Liquid. Journal of The Electrochemical Society 2020, 167, 042505. doi:10.1149/1945-7111/ab79a8
  • Fedorov, P. P.; Alexandrov, A. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. Journal of Fluorine Chemistry 2019, 227, 109374. doi:10.1016/j.jfluchem.2019.109374
  • Schmolke, L.; Gregori, B. J.; Giesen, B.; Schmitz, A.; Barthel, J.; Staiger, L.; Fischer, R. A.; von Wangelin, A. J.; Janiak, C. Bimetallic Co/Al nanoparticles in an ionic liquid: synthesis and application in alkyne hydrogenation. New Journal of Chemistry 2019, 43, 16583–16594. doi:10.1039/c9nj03622a
  • Simon, I.; Hornung, J.; Barthel, J.; Thomas, J.; Finze, M.; Fischer, R. A.; Janiak, C. Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids. Beilstein journal of nanotechnology 2019, 10, 1754–1767. doi:10.3762/bjnano.10.171
  • Siebels, M.; Schlüsener, C.; Thomas, J.; Xiao, Y.-X.; Yang, X.-Y.; Janiak, C. Rhodium nanoparticles supported on covalent triazine-based frameworks as re-usable catalyst for benzene hydrogenation and hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7, 11934–11943. doi:10.1039/c8ta12353e
Other Beilstein-Institut Open Science Activities