Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

Mattia Scardamaglia and Carla Bittencourt
Beilstein J. Nanotechnol. 2018, 9, 2015–2031. https://doi.org/10.3762/bjnano.9.191

Cite the Following Article

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view
Mattia Scardamaglia and Carla Bittencourt
Beilstein J. Nanotechnol. 2018, 9, 2015–2031. https://doi.org/10.3762/bjnano.9.191

How to Cite

Scardamaglia, M.; Bittencourt, C. Beilstein J. Nanotechnol. 2018, 9, 2015–2031. doi:10.3762/bjnano.9.191

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 590.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Song, Y.; Maia, R. A.; Ritleng, V.; Louis, B.; Shanmugam, S. Nickel Nanoparticles Confined in Core–Shell Derived from Covalent Organic Framework for the Efficient Electrocatalytic NO Reduction to NH3. ACS Applied Energy Materials 2024, 7, 2514–2523. doi:10.1021/acsaem.4c00048
  • Kodithuwakku, U. S.; Wanninayake, N.; Thomas, M. P.; Guiton, B. S.; Kim, D. Y. Unlocking efficiency in oxygen reduction reaction: Synergistic edge dopants of nitrogen and boron in carbon nano onions. Electrochimica Acta 2023, 471, 143365. doi:10.1016/j.electacta.2023.143365
  • Mane, R. S.; Pradhan, S.; Somkuwar, V.; Bhattacharyya, R.; Ghosh, P. C.; Jha, N. An electron "donor–acceptor–donor" strategy to activate ZIF-67 as a cathode material for fuel cells and zinc ion hybrid supercapacitor. Reaction Chemistry & Engineering 2023, 8, 891–907. doi:10.1039/d2re00357k
  • Nugroho, A.; Nursanto, E. B.; Curie, C. A.; Oktaviano, H. S.; Ainurrachma, F.; Trisunaryanti, W. Utilisation of gelatin as nitrogen source for N-doped carbon nanotubes and its performance for the oxygen reduction reaction. Advances in Natural Sciences: Nanoscience and Nanotechnology 2022, 13, 35004–035004. doi:10.1088/2043-6262/ac8660
  • Chadha, U.; Selvaraj, S. K.; Ashokan, H.; Hariharan, S. P.; Mathew Paul, V.; Venkatarangan, V.; Paramasivam, V. Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering 2022, 2022, 1–72. doi:10.1155/2022/1552334
  • Chen, G.; Yuan, H. Effects of carbon nanomaterials on the migration and fate of organic pollutants in the ecological environment. Ferroelectrics 2021, 570, 206–217. doi:10.1080/00150193.2020.1762424
  • Alekseeva, O. K.; Pushkareva, I. V.; Pushkarev, A. S.; Fateev, V. N. Graphene and Graphene-Like Materials for Hydrogen Energy. Nanotechnologies in Russia 2020, 15, 273–300. doi:10.1134/s1995078020030027
  • Ebikade, E. O.; Wang, Y.; Samulewicz, N.; Hasa, B.; Vlachos, D. G. Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. Reaction Chemistry & Engineering 2020, 5, 2134–2147. doi:10.1039/d0re00243g
  • Komarova, N. S.; Konev, D. V.; Kotkin, A. S.; Kochergin, V. K.; Manzhos, R. A.; Krivenko, A. G. Effect of graphene surface functionalization on the oxygen reduction reaction in alkaline media. Mendeleev Communications 2020, 30, 472–473. doi:10.1016/j.mencom.2020.07.021
  • González-Hernández, M.; Antolini, E.; Perez, J. CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Catalysts 2020, 10, 597. doi:10.3390/catal10060597
Other Beilstein-Institut Open Science Activities