Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

Muhammad Imran, Nunzio Motta and Mahnaz Shafiei
Beilstein J. Nanotechnol. 2018, 9, 2128–2170. https://doi.org/10.3762/bjnano.9.202

Supporting Information

Different types of electrospun material based gas sensors. Sensing performance of electrospun pure MOx nanofibers categorized based on the analyte gas. Sensing performance of electrospun metal-doped MOx nanofibers categorized based on the analyte gas. Sensing performance of electrospun MOx–MOx nanofibers categorized based on the analyte gas.

Supporting Information File 1: Summary of electrospun materials and their gas sensing performance.
Format: PDF Size: 480.2 KB Download

Cite the Following Article

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials
Muhammad Imran, Nunzio Motta and Mahnaz Shafiei
Beilstein J. Nanotechnol. 2018, 9, 2128–2170. https://doi.org/10.3762/bjnano.9.202

How to Cite

Imran, M.; Motta, N.; Shafiei, M. Beilstein J. Nanotechnol. 2018, 9, 2128–2170. doi:10.3762/bjnano.9.202

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 753.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lang, K.; Liu, T.; Padilla, D. J.; Nelson, M.; Landorf, C. W.; Patel, R. J.; Ballentine, M. L.; Kennedy, A. J.; Shih, W.-S.; Scotch, A.; Zhu, J. Nanofibers enabled advanced gas sensors: A review. Advanced Sensor and Energy Materials 2024, 3, 100093. doi:10.1016/j.asems.2024.100093
  • Humberg, N.; Grönwoldt, L.; Sokolowski, M. Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface. Beilstein journal of nanotechnology 2024, 15, 556–568. doi:10.3762/bjnano.15.48
  • Khomarloo, N.; Mohsenzadeh, E.; Gidik, H.; Bagherzadeh, R.; Latifi, M. Overall perspective of electrospun semiconductor metal oxides as high-performance gas sensor materials for NOx detection. RSC advances 2024, 14, 7806–7824. doi:10.1039/d3ra08119b
  • Jung, M.-H.; Kwak, M.; Ahn, J.; Song, J.-Y.; Kang, H.; Jung, H.-T. Highly Sensitive and Selective Acetylene CuO/ZnO Heterostructure Sensors through Electrospinning at Lean O2 Concentration for Transformer Diagnosis. ACS sensors 2024, 9, 217–227. doi:10.1021/acssensors.3c01844
  • Rodrigues, J.; Jain, S.; Shah, A.; Shimpi, N. Improving the parameters of metal oxide gas sensors through doping. Complex and Composite Metal Oxides for Gas, VOC and Humidity Sensors, Volume 2; Elsevier, 2024; pp 159–188. doi:10.1016/b978-0-323-95476-1.00010-1
  • Pathak, D.; Sharma, A.; Sharma, R. K.; Nunzi, J.; Mahajan, A.; Sharma, D. P. Electrospun Polymer Nanofibers for Technology Applications: A Short Review. Current Materials Science 2023, 16, 376–399. doi:10.2174/2666145416666230104104150
  • Simanjuntak, M. S.; Chu, C. S.; Rispandi, R.; Putro, D. Eosin-Y containing electrospun fibers for optical ammonia sensing based on wavelength shift. Journal of Physics: Conference Series 2023, 2631, 12020–012020. doi:10.1088/1742-6596/2631/1/012020
  • Zhang, S.; Zhang, B.; Li, W.; Dong, Y.; Ni, Y.; Yu, P.; Liang, J.; Kim, N.-Y.; Wang, J. Electrospun copper-doped tungsten oxide nanowires for triethylamine gas sensing. Vacuum 2023, 215, 112377. doi:10.1016/j.vacuum.2023.112377
  • Lalwani, S. K.; Debnath, A.; Gupta, V. k.; Sunny. On optimization of electrospun SnO2-ZnO nanofibers for low concentration ethanol sensing. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-11092-4
  • Phuoc, P. H.; Viet, N. N.; Chien, N. V.; Van Hoang, N.; Hung, C. M.; Hoa, N. D.; Van Duy, N.; Hong, H. S.; Trung, D. D.; Van Hieu, N. Comparative study of CuO/Co3O4 external and CuO-Co3O4 internal heterojunctions: Do these factors always enhance gas-sensing performance?. Sensors and Actuators B: Chemical 2023, 384, 133620. doi:10.1016/j.snb.2023.133620
  • Doust Mohammadi, M.; Louis, H.; Chukwu, U. G.; Bhowmick, S.; Rasaki, M. E.; Biskos, G. Gas-Phase Interaction of CO, CO2, H2S, NH3, NO, NO2, and SO2 with Zn12O12 and Zn24 Atomic Clusters. ACS omega 2023, 8, 20621–20633. doi:10.1021/acsomega.3c01177
  • Wang, H.; Xiong, R.; Cui, Z.; Wan, J.; Sa, B.; Wu, X.; Song, W.; Wang, X.; Zeng, D. Ultrasensitive Detection for Lithium-Ion Battery Electrolyte Leakage by Rare-Earth Nd-Doped SnO2 Nanofibers. ACS sensors 2023, 8, 1700–1709. doi:10.1021/acssensors.2c02862
  • Wang, Z.; Fan, L.; Li, R.; Xu, Y.; Fu, Q. Preparation of polymer composites with high thermal conductivity by constructing a "double thermal conductive network" via electrostatic spinning. Composites Communications 2022, 36, 101371. doi:10.1016/j.coco.2022.101371
  • Platonov, V.; Nasriddinov, A.; Rumyantseva, M. Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers 2022, 14, 3481. doi:10.3390/polym14173481
  • Xu, S.; Wang, J.; Lin, H.; Li, R.; Cheng, Y.; Sang, S.; Zhuo, K. ZnO/NiO nanofibers prepared by electrostatic spinning for rapid ammonia detection at room temperature. Electronic Materials Letters 2022, 18, 568–577. doi:10.1007/s13391-022-00362-8
  • Sonwane, N. D.; Kondawar, S. S.; Gayakwad, P. V.; Kondawar, S. B. Application of Electrospun Polyaniline (PANI) Based Composites Nanofibers for Sensing and Detection. Electrospun Nanofibers; Springer International Publishing, 2022; pp 491–517. doi:10.1007/978-3-030-99958-2_18
  • Hontañón, E.; Vallejos, S. One-Dimensional Metal Oxide Nanostructures for Chemical Sensors. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture; IntechOpen, 2022. doi:10.5772/intechopen.101749
  • Dalfen, I.; Borisov, S. M. Porous matrix materials in optical sensing of gaseous oxygen. Analytical and bioanalytical chemistry 2022, 414, 4311–4330. doi:10.1007/s00216-022-04014-6
  • Gebrehiyot, S.; Madiajagan, M.; Pattanaik, B.; Balamurugan, E.; Selvakanmani, S.; Vijayarangam, S. High Sensitive IoT Nanotechnology Sensors for Improved Data Acquisition and Processing. In 2022 International Conference on Electronics and Renewable Systems (ICEARS), IEEE, 2022; pp 617–621. doi:10.1109/icears53579.2022.9752333
  • Zhou, D.; Liu, H.; Ning, J.; Cao, G.; Zhang, H.; Deng, M.; Tian, Y. A Dual pH/O2 Sensing Film Based on Functionalized Electrospun Nanofibers for Real-Time Monitoring of Cellular Metabolism. Molecules (Basel, Switzerland) 2022, 27, 1586. doi:10.3390/molecules27051586
Other Beilstein-Institut Open Science Activities