Supporting Information
Supporting Information File 1: Calculational details. | ||
Format: PDF | Size: 1.0 MB | Download |
Cite the Following Article
Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires
Samuel D. Escribano, Alfredo Levy Yeyati and Elsa Prada
Beilstein J. Nanotechnol. 2018, 9, 2171–2180.
https://doi.org/10.3762/bjnano.9.203
How to Cite
Escribano, S. D.; Yeyati, A. L.; Prada, E. Beilstein J. Nanotechnol. 2018, 9, 2171–2180. doi:10.3762/bjnano.9.203
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 427.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Cayao, J. Non-Hermitian zero-energy pinning of Andreev and Majorana bound states in superconductor-semiconductor systems. Physical Review B 2024, 110. doi:10.1103/physrevb.110.085414
- Dominguez, F.; Novik, E. G.; Recher, P. Fraunhofer pattern in the presence of Majorana zero modes. Physical Review Research 2024, 6. doi:10.1103/physrevresearch.6.023304
- Feng, Y.; Zhou, Z.; Han, Y.; Gao, Z.; Tang, X.; Ma, S.; Xiong, Y. Modeling analysis of the electrostatic interaction between a nth-order electric multipole moment and dielectric layers utilizing the image multipole method. Journal of Electrostatics 2024, 129, 103906. doi:10.1016/j.elstat.2024.103906
- Gruñeiro, L.; Alvarado, M.; Yeyati, A. L.; Arrachea, L. Transport features of a topological superconducting nanowire with a quantum dot: Conductance and noise. Physical Review B 2023, 108. doi:10.1103/physrevb.108.045418
- Leenknegt, L.; Panfilov, A. V.; Dierckx, H. Impact of electrode orientation, myocardial wall thickness, and myofiber direction on intracardiac electrograms: numerical modeling and analytical solutions. Frontiers in physiology 2023, 14, 1213218. doi:10.3389/fphys.2023.1213218
- Awoga, O. A.; Leijnse, M.; Black-Schaffer, A. M.; Cayao, J. Mitigating disorder-induced zero-energy states in weakly coupled superconductor-semiconductor hybrid systems. Physical Review B 2023, 107. doi:10.1103/physrevb.107.184519
- Peñaranda, F.; Aguado, R.; Prada, E.; San-Jose, P. Majorana bound states in encapsulated bilayer graphene. SciPost Physics 2023, 14. doi:10.21468/scipostphys.14.4.075
- Svejstrup, W.; Maiani, A.; Van Hoogdalem, K.; Flensberg, K. Orbital-free approach for large-scale electrostatic simulations of quantum nanoelectronics devices. Semiconductor Science and Technology 2023, 38, 45004–045004. doi:10.1088/1361-6641/acbb9a
- Marra, P. Majorana nanowires for topological quantum computation. Journal of Applied Physics 2022, 132. doi:10.1063/5.0102999
- Maiani, A.; Geier, M.; Flensberg, K. Conductance matrix symmetries of multiterminal semiconductor-superconductor devices. Physical Review B 2022, 106. doi:10.1103/physrevb.106.104516
- Więckowski, A.; Ptok, A.; Mierzejewski, M.; Kupczyński, M. Identification of the Majorana edge modes in tight-binding systems based on the Krylov method. Computer Physics Communications 2021, 269, 108135. doi:10.1016/j.cpc.2021.108135
- Escribano, S. D.; Prada, E.; Oreg, Y.; Yeyati, A. L. Tunable proximity effects and topological superconductivity in ferromagnetic hybrid nanowires. Physical Review B 2021, 104. doi:10.1103/physrevb.104.l041404
- Kobiałka, A.; Ptok, A. Majorana bound states and zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Acta Physica Polonica A 2020, 138, 681–685. doi:10.12693/aphyspola.138.681
- Avila, J.; Prada, E.; San-Jose, P.; Aguado, R. Superconducting islands with topological Josephson junctions based on semiconductor nanowires. Physical Review B 2020, 102, 094518. doi:10.1103/physrevb.102.094518
- Prada, E.; San-Jose, P.; de Moor, M. W. A.; Geresdi, A.; Lee, E. J. H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L. P. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nature Reviews Physics 2020, 2, 575–594. doi:10.1038/s42254-020-0228-y
- Escribano, S. D.; Yeyati, A. L.; Prada, E. Improved effective equation for the Rashba spin-orbit coupling in semiconductor nanowires. Physical Review Research 2020, 2, 033264. doi:10.1103/physrevresearch.2.033264
- Schulz, F.; Plekhanov, K.; Loss, D.; Klinovaja, J. Majorana bound states in topological insulators with hidden Dirac points. Physical Review Research 2020, 2, 033215. doi:10.1103/physrevresearch.2.033215
- Thakurathi, M.; Chevallier, D.; Loss, D.; Klinovaja, J. Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM. Physical Review Research 2020, 2, 023197. doi:10.1103/physrevresearch.2.023197
- Gao, X.; Nguyen, T. T.; Gong, X.; Chen, X.; Song, Z.; Du, W.; Chai, R.; Guo, M. A composite material of vacuum heat-treated CQDs/Ce0.7Zr0.3O2 with enhanced charge separation for efficient photocatalytic degradation. Vacuum 2019, 169, 108912. doi:10.1016/j.vacuum.2019.108912
- Kobiałka, A.; Domański, T.; Ptok, A. Delocalisation of Majorana quasiparticles in plaquette-nanowire hybrid system. Scientific reports 2019, 9, 12933. doi:10.1038/s41598-019-49227-5