Supporting Information
Figure S1: Optical micrograph of a scale-like surface texture after 1000 m of dry sliding against sapphire. Figure S2: Scanning electron microscopy image of a focused ion beam cross-section of a laser-textured sample. Figure S3: Optical micrograph of a PEEK disc after a dry sliding experiment.
Supporting Information File 1: Additional figures. | ||
Format: PDF | Size: 549.2 KB | Download |
Cite the Following Article
Friction reduction through biologically inspired scale-like laser surface textures
Johannes Schneider, Vergil Djamiykov and Christian Greiner
Beilstein J. Nanotechnol. 2018, 9, 2561–2572.
https://doi.org/10.3762/bjnano.9.238
How to Cite
Schneider, J.; Djamiykov, V.; Greiner, C. Beilstein J. Nanotechnol. 2018, 9, 2561–2572. doi:10.3762/bjnano.9.238
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 814.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Tsujioka, K.; Koda, A.; Hirai, Y.; Shimomura, M.; Matsuo, Y. Friction Reduction Effect Caused by Microcontact and Load Dispersion on the Moth‐Eye Structure. Advanced Engineering Materials 2024, 26. doi:10.1002/adem.202401405
- Bergmann, A.; Sumpf, J.; Dallinger, N.; Moneke, M.; Golder, M. Semi-analytical calculation model for friction of polymers on the example of POM ∣ PE-UHMW and steel ∣ PE-UHMW. Friction 2024, 12, 2355–2369. doi:10.1007/s40544-024-0887-2
- Kumar, R.; Rezapourian, M.; Rahmani, R.; Maurya, H. S.; Kamboj, N.; Hussainova, I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics (Basel, Switzerland) 2024, 9, 209. doi:10.3390/biomimetics9040209
- Wierzbicka, N.; Talar, R. TRIBOLOGICAL PROPERTIES OF A SILICONE-BASED COMPOSITEWITH INORGANIC ADDITIVES. Tribologia 2024, 306, 79–90. doi:10.5604/01.3001.0054.3946
- Lyubicheva, A. N.; Mezrin, A. M.; Kuznetsov, V. A.; Torskaya, E. V. Effect of Viscous Intermediate Layer on Uneven Wear of Locally Hardened Steel. Tribology Letters 2024, 72. doi:10.1007/s11249-023-01821-5
- Han, Z.; Ma, L.; Yu, X.; Li, H.; Jiang, H. Numerical simulation and experimental investigation on the friction reduction properties of ZrO$$_2$$ by laser surface texture. Applied Physics A 2024, 130. doi:10.1007/s00339-023-07217-5
- Shrivastava, A.; Kumar, D. R.; Manikandan, G.; Verma, R. K. Laser surface texturing of dies in strip drawing of DP600 steel sheet. Surface Engineering 2023, 39, 870–881. doi:10.1080/02670844.2023.2265612
- Lyu, Y.; Wang, G.; Li, X.; Xu, L. Research on topological grinding of bionic structured scale surface for reducing contact friction and fluid drag resistance. Machining Science and Technology 2023, 27, 577–609. doi:10.1080/10910344.2023.2260476
- Diao, Q.; Zou, H.; Ren, X.; Wang, C.; Wang, Y.; Li, H.; Sui, T.; Lin, B.; Yan, S. A focused review on the tribological behavior of C/SiC composites: Present status and future prospects. Journal of the European Ceramic Society 2023, 43, 3875–3904. doi:10.1016/j.jeurceramsoc.2023.03.002
- Evangelista, I.; Wencel, D.; Beguin, S.; Zhang, N.; Gilchrist, M. D. Influence of Surface Texturing on the Dry Tribological Properties of Polymers in Medical Devices. Polymers 2023, 15, 2858. doi:10.3390/polym15132858
- Solano, J.; Balibrea, F.; Moreno, J. A.; Marín, F. Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics 2023, 11, 1341. doi:10.3390/math11061341
- Sharma, S. K.; Grewal, H. S. Tribological Behavior of Bioinspired Surfaces. Biomimetics (Basel, Switzerland) 2023, 8, 62. doi:10.3390/biomimetics8010062
- Laki, G.; Nagy, A. L.; Rohde-Brandenburger, J.; Hanula, B. A Review on Friction Reduction by Laser Textured Surfaces in Internal Combustion Engines. Tribology Online 2022, 17, 318–334. doi:10.2474/trol.17.318
- Koplin, C.; Weißer, D. F.; Fromm, A.; Deckert, M. H. Stiction and Friction of Nano- and Microtextured Liquid Silicon Rubber Surface Formed by Injection Molding. Applied Mechanics 2022, 3, 1270–1287. doi:10.3390/applmech3040073
- Yin, C.; Huang, H.; Dan, Z.; Liu, Z. Disassembly damage and bearing capacity of shaft with surface micro-texture. Surface Engineering 2022, 38, 562–570. doi:10.1080/02670844.2022.2113775
- Ali, S.; Kurniawan, R.; Chul, P. G.; Ko, T. J. Tribological properties of hierarchical micro-dimples produced on a cylindrical surface by dual-frequency texturing. Friction 2022, 11, 246–258. doi:10.1007/s40544-022-0598-5
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Gao, Y.; Wu, C. Synergetic effects of biomimetic microtexture with multi-solid lubricants to improve tribological properties of AISI 4140 steel. Tribology International 2022, 167, 107395. doi:10.1016/j.triboint.2021.107395
- Moreu, C. A. C.; Cortés, D. M.; del Refugio Lara Banda, M.; Sánchez, E. O. G.; Del Carmen Zambrano Robledo, P.; Rodríguez, M. A. L. H. Surface, Chemical, and Tribological Characterization of an ASTM F-1537 Cobalt Alloy Modified through an Ns-Pulse Laser. Metals 2021, 11, 1719. doi:10.3390/met11111719
- Zhang, M.; Zhou, B.; Jie, G.; Hei, H.; Ma, Y.; Huang, X.; Liu, Z.; Xue, Y.; Yu, S.; Wu, Y. A scalelike micro/nano-textured structure on Ti-based implants with enhanced cytocompatibility and osteogenic activities. Surface and Coatings Technology 2021, 422, 127497. doi:10.1016/j.surfcoat.2021.127497
- Huang, Q.; Shi, X.; Ma, J. Tribological Behavior of Surface Bionic Rhombic-Textured M50 Steel Containing SnAgCu and MXene-Nb2C under Dry Sliding Conditions. Journal of Materials Engineering and Performance 2021, 1–13.