Supporting Information
Explains the input and output files of the pattern generator program in detail (see also Figure 1). The parameters of the settings file setf are defined. The structure of the geometry file geof and the generated pattern file are shown. The usage of the illustration file and the description file is demonstrated.
Supporting Information File 1: Supporting information. | ||
Format: PDF | Size: 192.4 KB | Download |
Cite the Following Article
Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition
Lukas Keller and Michael Huth
Beilstein J. Nanotechnol. 2018, 9, 2581–2598.
https://doi.org/10.3762/bjnano.9.240
How to Cite
Keller, L.; Huth, M. Beilstein J. Nanotechnol. 2018, 9, 2581–2598. doi:10.3762/bjnano.9.240
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 545.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Reisecker, V.; Winkler, R.; Plank, H. A Review on Direct‐Write Nanoprinting of Functional 3D Structures with Focused Electron Beams. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202407567
- Somers, P.; Koch, S.; Kiefer, P.; Meretska, M. L.; Wegener, M. Holographic multi-photon 3D laser nanoprinting – at the speed of light: opinion. Optical Materials Express 2024, 14, 2370. doi:10.1364/ome.538751
- Dashti, M.; Emami, F.; Zohoori, S. Advancements in the design and optimization of plasmonic bandpass filters for enhanced optical communication systems: a comprehensive review. Discover Electronics 2024, 1. doi:10.1007/s44291-024-00014-1
- Solov'yov, A. V.; Verkhovtsev, A. V.; Mason, N. J.; Amos, R. A.; Bald, I.; Baldacchino, G.; Dromey, B.; Falk, M.; Fedor, J.; Gerhards, L.; Hausmann, M.; Hildenbrand, G.; Hrabovský, M.; Kadlec, S.; Kočišek, J.; Lépine, F.; Ming, S.; Nisbet, A.; Ricketts, K.; Sala, L.; Schlathölter, T.; Wheatley, A. E. H.; Solov'yov, I. A. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chemical reviews 2024, 124, 8014–8129. doi:10.1021/acs.chemrev.3c00902
- Córdoba, R.; Fomin, V. M. Topological and chiral superconductor nanoarchitectures. Applied Physics Letters 2024, 124. doi:10.1063/5.0206198
- Tsarapkin, A.; Maćkosz, K.; Jureddy, C. S.; Utke, I.; Höflich, K. Area-Selective Chemical Vapor Deposition of Gold by Electron Beam Seeding. Advanced materials (Deerfield Beach, Fla.) 2024, 36, e2313571. doi:10.1002/adma.202313571
- Volkov, O. M.; Pylypovskyi, O. V.; Porrati, F.; Kronast, F.; Fernandez-Roldan, J. A.; Kákay, A.; Kuprava, A.; Barth, S.; Rybakov, F. N.; Eriksson, O.; Lamb-Camarena, S.; Makushko, P.; Mawass, M.-A.; Shakeel, S.; Dobrovolskiy, O. V.; Huth, M.; Makarov, D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nature communications 2024, 15, 2193. doi:10.1038/s41467-024-46403-8
- Kiefer, P.; Hahn, V.; Kalt, S.; Sun, Q.; Eggeler, Y. M.; Wegener, M. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light: Advanced Manufacturing 2024, 4, 1. doi:10.37188/lam.2024.003
- Córdoba, R. Additive nanofabrication using focused ion and electron beams. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 448–464. doi:10.1016/b978-0-323-90800-9.00035-4
- Makarov, D.; Pylypovskyi, O. V. Magnetic nanostructures. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 112–131. doi:10.1016/b978-0-323-90800-9.00048-2
- Balčas, G.; Malinauskas, M.; Farsari, M.; Juodkazis, S. Fabrication of Glass‐Ceramic 3D Micro‐Optics by Combining Laser Lithography and Calcination. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202215230
- Kuprava, A.; Huth, M. Fast and Efficient Simulation of the FEBID Process with Thermal Effects. Nanomaterials (Basel, Switzerland) 2023, 13, 858. doi:10.3390/nano13050858
- Dong, Z.; Levkin, P. A. 3D Microprinting of Super‐Repellent Microstructures: Recent Developments, Challenges, and Opportunities. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202213916
- Fowlkes, J. D.; Winkler, R.; Rack, P. D.; Plank, H. 3D Nanoprinting Replication Enhancement Using a Simulation-Informed Analytical Model for Electron Beam Exposure Dose Compensation. ACS omega 2023, 8, 3148–3175. doi:10.1021/acsomega.2c06596
- Hsiao, K.; Lee, B. J.; Samuelsen, T.; Lipkowitz, G.; Kronenfeld, J. M.; Ilyn, D.; Shih, A.; Dulay, M. T.; Tate, L.; Shaqfeh, E. S. G.; DeSimone, J. M. Single-digit-micrometer-resolution continuous liquid interface production. Science advances 2022, 8, eabq2846. doi:10.1126/sciadv.abq2846
- Dobrovolskiy, O. V.; Pylypovskyi, O. V.; Skoric, L.; Fernández-Pacheco, A.; Van Den Berg, A.; Ladak, S.; Huth, M. Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity. Topics in Applied Physics; Springer International Publishing, 2022; pp 215–268. doi:10.1007/978-3-031-09086-8_5
- Fang, C.; Chai, Q.; Chen, Y.; Xing, Y.; Zhou, Z. Pattern generation method and prediction model of nanohelices fabricated by focused ion beam induced deposition. Precision Engineering 2022, 77, 241–250. doi:10.1016/j.precisioneng.2022.06.002
- Cheenikundil, R.; Bauer, J.; Goharyan, M.; d'Aquino, M.; Hertel, R. High-frequency modes in a magnetic buckyball nanoarchitecture. APL Materials 2022, 10. doi:10.1063/5.0097695
- Lasseter, J.; Rack, P. D.; Randolph, S. J. Selected Area Deposition of PtCx Nanostructures: Implications for Functional Coatings of 3D Nanoarchitectures. ACS Applied Nano Materials 2022, 5, 10890–10899. doi:10.1021/acsanm.2c02182
- Makarov, D. Glassy net of nanomagnets. Nature Physics 2022, 18, 488–489. doi:10.1038/s41567-022-01588-x