Supporting Information
Size distribution for all synthesized NPs (Figure S1), HRTEM images for MNP-6, MNP-44 and MNP-25 samples (Figure S2), T2-weighted MRI-images of the NP solutions in water and 2% agarose (Figure S3), hydrodynamic size of NPs in water (Table S1), a cell viability study by MTS assay (Table S2), apoptosis/necrosis activation (Figures S4 and S6) as well as reactive oxygen species generation (Figures S5 and S7) in 4T1 cells cultivated with MNP-25 NPs followed by AMF application in comparison with control, are presented in the Supporting Information.
Supporting Information File 1: Additional experimental information. | ||
Format: PDF | Size: 1.1 MB | Download |
Cite the Following Article
How to Cite
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 546.4 KB | Download |
Citations to This Article
Scholarly Works
- Feggeler, T.; Meckenstock, R.; Strusch, T.; Efremova, M. V.; Farle, M.; Wiedwald, U. An Ultrasensitive Molecular Detector for Direct Sensing of Spin Currents at Room Temperature. ACS applied materials & interfaces 2024, 16, 54139–54145. doi:10.1021/acsami.4c09015
- Neusch, A.; Wiedwald, U.; Novoselova, I. P.; Kuckla, D. A.; Tetos, N.; Sadik, S.; Hagemann, P.; Farle, M.; Monzel, C. Semisynthetic ferritin-based nanoparticles with high magnetic anisotropy for spatial magnetic manipulation and inductive heating. Nanoscale 2024, 16, 15113–15127. doi:10.1039/d4nr01652a
- Adhikari, S.; Efremova, M. V.; Spaeth, P.; Koopmans, B.; Lavrijsen, R.; Orrit, M. Single-Particle Photothermal Circular Dichroism and Photothermal Magnetic Circular Dichroism Microscopy. Nano letters 2024, 24, 5093–5103. doi:10.1021/acs.nanolett.4c00448
- Ponnusamy, T. A.; Vadivel, S.; Gomathinayagam, K.; Arumugam, S.; Arumugam, M.; Thangamani, R.; Natarajan, R.; Ravikumar, C.; Yadav, N. N. Hybrid nanomaterials as semiconductors. Hybrid Nanofillers for Polymer Reinforcement; Elsevier, 2024; pp 209–235. doi:10.1016/b978-0-323-99132-2.00006-6
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. Discover nano 2023, 18, 157. doi:10.1186/s11671-023-03943-0
- Xie, X.; Zhai, J.; Zhou, X.; Guo, Z.; Lo, P.-C.; Zhu, G.; Chan, K. W. Y.; Yang, M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. Advanced materials (Deerfield Beach, Fla.) 2023, 36, e2306450. doi:10.1002/adma.202306450
- Semkina, A.; Nikitin, A.; Ivanova, A.; Chmelyuk, N.; Sviridenkova, N.; Lazareva, P.; Abakumov, M. 3,4-Dihydroxiphenylacetic Acid-Based Universal Coating Technique for Magnetic Nanoparticles Stabilization for Biomedical Applications. Journal of functional biomaterials 2023, 14, 461. doi:10.3390/jfb14090461
- Sudhakar, K.; Kono, T.; El-Melegy, T.; Badr, H.; Laxmeesha, P. M.; Montazeri, K.; Semisalova, A.; Farle, M.; Wiedwald, U.; Barsoum, M. W. One pot, scalable synthesis of hydroxide derived ferrite magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 2023, 582, 170986. doi:10.1016/j.jmmm.2023.170986
- Dash, P.; Pattanayak, S.; majhi, M.; Nayak, B. Facile and controllable synthesis of hematite (α-Fe2O3) nanostructures using GRA-APSO and ANN: Reaction performance optimization for haemotoxicity and MRI assessment. Journal of Alloys and Compounds 2023, 957, 170383. doi:10.1016/j.jallcom.2023.170383
- Myrovali, E.; Papadopoulos, K.; Charalampous, G.; Kesapidou, P.; Vourlias, G.; Kehagias, T.; Angelakeris, M.; Wiedwald, U. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia. ACS omega 2023, 8, 12955–12967. doi:10.1021/acsomega.2c05962
- Garanina, A. S.; Efremova, M. V.; Machulkin, A. E.; Lyubin, E. V.; Vorobyeva, N. S.; Zhironkina, O. A.; Strelkova, O. S.; Kireev, I. I.; Alieva, I. B.; Uzbekov, R. E.; Agafonov, V. N.; Shchetinin, I. V.; Fedyanin, A. A.; Erofeev, A. S.; Gorelkin, P. V.; Korchev, Y. E.; Savchenko, A. G.; Abakumov, M. A. Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction. Magnetochemistry 2022, 8, 185. doi:10.3390/magnetochemistry8120185
- Rajana, N.; Mounika, A.; Chary, P. S.; Bhavana, V.; Urati, A.; Khatri, D.; Singh, S. B.; Mehra, N. K. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. Journal of controlled release : official journal of the Controlled Release Society 2022, 352, 1024–1047. doi:10.1016/j.jconrel.2022.11.009
- Maier, A.; van Oossanen, R.; van Rhoon, G. C.; Pignol, J.-P.; Dugulan, I.; Denkova, A. G.; Djanashvili, K. From Structure to Function: Understanding Synthetic Conditions in Relation to Magnetic Properties of Hybrid Pd/Fe-Oxide Nanoparticles. Nanomaterials (Basel, Switzerland) 2022, 12, 3649. doi:10.3390/nano12203649
- Ninakanti, R.; Dingenen, F.; Borah, R.; Peeters, H.; Verbruggen, S. W. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Topics in current chemistry (Cham) 2022, 380, 40. doi:10.1007/s41061-022-00390-w
- Christou, E.; Pearson, J. R.; Beltrán, A. M.; Fernández-Afonso, Y.; Gutiérrez, L.; de la Fuente, J. M.; Gámez, F.; García-Martín, M. L.; Caro, C. Iron-Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy. Pharmaceutics 2022, 14, 636. doi:10.3390/pharmaceutics14030636
- Mahmoudi, R.; Esmaeili, A.; Nematollahzadeh, A. Preparation of Fe3O4/Ag3VO4/Au nanocomposite coated with Caerophyllum macropodum extract modified with oleic acid for theranostics agent in medical imaging. Journal of Photochemistry and Photobiology A: Chemistry 2022, 425, 113724. doi:10.1016/j.jphotochem.2021.113724
- Nazir, F.; Tabish, T. A.; Tariq, F.; Iftikhar, S.; Wasim, R.; Shahnaz, G. Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug discovery today 2022, 27, 1698–1705. doi:10.1016/j.drudis.2022.02.014
- Sokolov, A. E.; Ivanova, O. S.; Fedorov, A. S.; Kovaleva, E. A.; Vysotin, M. A.; Lin, C.-R.; Ovchinnikov, S. G. Why the Magnetite–Gold Core–Shell Nanoparticles Are Not Quite Good and How to Improve Them. Physics of the Solid State 2021, 63, 1536–1540. doi:10.1134/s1063783421090365
- Fedorov, A. S.; Kovaleva, E. A.; Sokolov, A. E.; Visotin, M.; Lin, C.; Ovchinnikov, S. Trimetallic magnetite-Ti-Au nanoparticle formation: A theoretical approach. Materials Chemistry and Physics 2021, 271, 124847. doi:10.1016/j.matchemphys.2021.124847
- Novoselova, I. P.; Neusch, A.; Brand, J.-S.; Otten, M.; Safari, M. R.; Bartels, N.; Karg, M.; Farle, M.; Wiedwald, U.; Monzel, C. Magnetic Nanoprobes for Spatio-Mechanical Manipulation in Single Cells. Nanomaterials (Basel, Switzerland) 2021, 11, 2267. doi:10.3390/nano11092267