Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry

Pierre Farger, Cédric Leuvrey, Mathieu Gallart, Pierre Gilliot, Guillaume Rogez, João Rocha, Duarte Ananias, Pierre Rabu and Emilie Delahaye
Beilstein J. Nanotechnol. 2018, 9, 2775–2787. https://doi.org/10.3762/bjnano.9.259

Supporting Information

Supporting Information contains a representation of the coordination polyhedron, a table of selected bonds, a comparison of the experimental powder X-ray diffraction patterns of the different compounds and the simulated pattern from single crystals X-ray data, SEM analysis, TGA/TDA analysis, a summary of the weight loss values for the different compounds, infrared spectra, luminescence measurement and magnetic expression.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 1.2 MB Download

Cite the Following Article

Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry
Pierre Farger, Cédric Leuvrey, Mathieu Gallart, Pierre Gilliot, Guillaume Rogez, João Rocha, Duarte Ananias, Pierre Rabu and Emilie Delahaye
Beilstein J. Nanotechnol. 2018, 9, 2775–2787. https://doi.org/10.3762/bjnano.9.259

How to Cite

Farger, P.; Leuvrey, C.; Gallart, M.; Gilliot, P.; Rogez, G.; Rocha, J.; Ananias, D.; Rabu, P.; Delahaye, E. Beilstein J. Nanotechnol. 2018, 9, 2775–2787. doi:10.3762/bjnano.9.259

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farger, P.; Leuvrey, C.; Lenertz, M.; Taupier, G.; Dorkenoo, K. D.; Ihiawakrim, D.; Cherifi‐Hertel, S.; Rogez, G.; Rabu, P.; Delahaye, E. Ferroelectric Order in the Chiral Coordination Polymers [Ln2(L*)2(ox)2(H2O)2] with Ln=Gd3+ or Dy3+, L*=((S, S)‐1,3‐bis(1‐Carboxylethyl)imidazolium and Ox=Oxalate. Zeitschrift für anorganische und allgemeine Chemie 2024, 650. doi:10.1002/zaac.202400005
  • Ponnusamy, T. A.; Vadivel, S.; Gomathinayagam, K.; Arumugam, S.; Arumugam, M.; Thangamani, R.; Natarajan, R.; Ravikumar, C.; Yadav, N. N. Hybrid nanomaterials as semiconductors. Hybrid Nanofillers for Polymer Reinforcement; Elsevier, 2024; pp 209–235. doi:10.1016/b978-0-323-99132-2.00006-6
  • Shah, S.; Pietsch, T.; Herz, M. A.; Jach, F.; Ruck, M. Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids. Chemistry 2023, 5, 1378–1394. doi:10.3390/chemistry5020094
  • Bhattacharyya, A.; Gutiérrez, M.; Cohen, B.; Valverde-González, A.; Iglesias, M.; Douhal, A. How does the metal doping in mixed metal MOFs influence their photodynamics? A direct evidence for improved photocatalysts. Materials Today Energy 2022, 29, 101125. doi:10.1016/j.mtener.2022.101125
  • Wei, W.; Zhang, X.; Lu, L.; Feng, S. Novel 2D isomorphic lanthanide complexes based on a bifunctional 5-(pyridin-3-yloxy)isophthalic acid: synthesis, structure, fluorescence and magnetic properties. CrystEngComm 2022, 24, 6204–6214. doi:10.1039/d2ce00626j
  • Liu, M.; Yin, Q.; Zhong, S.; Sun, H.; Wang, Y.; Liu, S.; Wang, J.; Diao, Y.; Yang, F.; Xin, T. Two Novel Rare Earth Coordination Polymers Derived from Zwitterionic 1,3-Bis(1-carboxylatoethyl)imidazolium Bromide: Structures and Magnetic Properties. Journal of Molecular Structure 2022, 1250, 131665. doi:10.1016/j.molstruc.2021.131665
  • Wang, Y.; Chang, J.-P.; Xu, R.; Bai, S.; Wang, D.; Yang, G.-P.; Sun, L.-Y.; Li, P.; Han, Y.-F. N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chemical Society reviews 2021, 50, 13559–13586. doi:10.1039/d1cs00296a
  • Vialtsev, M. B.; Tcelykh, L. O.; Kozlov, M. I.; Latipov, E. V.; Bobrovsky, A.; Utochnikova, V. V. Terbium and europium aromatic carboxylates in the polystyrene matrix: The first metal-organic-based material for high-temperature thermometry. Journal of Luminescence 2021, 239, 118400. doi:10.1016/j.jlumin.2021.118400
  • Wei, W. W.; Lu, L.; Feng, S. S.; Zhu, M. L.; Englert, U. Synthesis, structure and magnetocaloric properties of a new two-dimensional gadolinium(III) coordination polymer based on azo­benzene-2,2′,3,3′-tetra­carb­oxy­lic acid. Acta crystallographica. Section C, Structural chemistry 2021, 77, 591–598. doi:10.1107/s2053229621008871
  • Sun, H.; Liu, M.; Fu, X.; Xin, T.; Wang, Y.; Wang, S.; Wang, J.; Diao, Y.; Yang, F.; Zhang, T. Solvothermal Synthesis and Conformation Probe of Novel Europium Complex of Brønsted Acidic Ionic Liquid: 1,3-Bis(1-carboxylatoethyl)imidazolium Bromide. Zeitschrift für anorganische und allgemeine Chemie 2021, 648. doi:10.1002/zaac.202100058
  • Mara, D.; Kaczmarek, A. M.; Artizzu, F.; Abalymov, A.; Skirtach, A. G.; Van Hecke, K.; Van Deun, R. Luminescent PMMA Films and PMMA@SiO2 Nanoparticles with Embedded Ln3+ Complexes for Highly Sensitive Optical Thermometers in the Physiological Temperature Range*. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 6479–6488. doi:10.1002/chem.202004951
  • Trannoy, V.; Neto, A. N. C.; Brites, C. D. S.; Carlos, L. D.; Serier-Brault, H. Engineering of Mixed Eu 3+ /Tb 3+ Metal‐Organic Frameworks Luminescent Thermometers with Tunable Sensitivity. Advanced Optical Materials 2021, 9, 2001938. doi:10.1002/adom.202001938
  • Zhang, H.-t.; Ma, L.; Han, M.-r.; Feng, S.; Zhu, M. A one-dimensional chiral gadolinium complex based on a tartaric acid derivative: crystal structure, thermal behavior and magnetic properties. Inorganic and Nano-Metal Chemistry 2020, 1–10.
  • Zhang, H.-t.; Ma, L.; Han, M.-r.; Feng, S.-s.; Zhu, M.-l. A one-dimensional chiral gadolinium complex based on a tartaric acid derivative: crystal structure, thermal behavior and magnetic properties. Inorganic and Nano-Metal Chemistry 2020, 51, 761–765. doi:10.1080/24701556.2020.1862211
  • Vialtsev, M. B.; Dalinger, A. I.; Latipov, E. V.; Lepnev, L. S.; Kushnir, S. E.; Vatsadze, S. Z.; Utochnikova, V. V. New approach to increase the sensitivity of Tb-Eu-based luminescent thermometer. Physical chemistry chemical physics : PCCP 2020, 22, 25450–25454. doi:10.1039/d0cp04909c
  • Wang, Y.; Fu, X.; Liu, S.; Yang, F.; Wang, J.; Pan, Y.; Lu, C.; Xin, T.; Zhang, T. A new gadolinium complex with 1, 3-bis (carboxymethyl) imidazolium chloride ionic liquid: Solvothermal synthesis, structure and magnetic properties. Journal of Molecular Structure 2020, 1217, 128340. doi:10.1016/j.molstruc.2020.128340
  • Kumar, M.; Li, L.-Q.; Zaręba, J. K.; Tashi, L.; Sahoo, S. C.; Nyk, M.; Liu, S.-J.; Sheikh, H. N. Lanthanide Contraction in Action: Structural Variations in 13 Lanthanide(III) Thiophene-2,5-dicarboxylate Coordination Polymers (Ln = La–Lu, Except Pm and Tm) Featuring Magnetocaloric Effect, Slow Magnetic Relaxation, and Luminescence-Lifetime-based Thermometry. Crystal Growth & Design 2020, 20, 6430–6452. doi:10.1021/acs.cgd.0c00611
  • Chen, L.; Liu, D.; Peng, J.; Du, Q.; He, H. Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coordination Chemistry Reviews 2020, 404, 213113. doi:10.1016/j.ccr.2019.213113
  • Taubert, A.; Leroux, F.; Rabu, P.; de Zea Bermudez, V. Advanced hybrid nanomaterials. Beilstein journal of nanotechnology 2019, 10, 2563–2567. doi:10.3762/bjnano.10.247
  • Han, M.-r.; Zhang, H.-t.; Wang, J.-n.; Feng, S.; Lu, L. Three chiral one-dimensional lanthanide–ditoluoyl-tartrate bifunctional polymers exhibiting luminescence and magnetic behaviors. RSC advances 2019, 9, 32288–32295. doi:10.1039/c9ra06920h
Other Beilstein-Institut Open Science Activities