Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 613.9 KB | Download |
Cite the Following Article
The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy
Jan Hynek, Sebastian Jurík, Martina Koncošová, Jaroslav Zelenka, Ivana Křížová, Tomáš Ruml, Kaplan Kirakci, Ivo Jakubec, František Kovanda, Kamil Lang and Jan Demel
Beilstein J. Nanotechnol. 2018, 9, 2960–2967.
https://doi.org/10.3762/bjnano.9.275
How to Cite
Hynek, J.; Jurík, S.; Koncošová, M.; Zelenka, J.; Křížová, I.; Ruml, T.; Kirakci, K.; Jakubec, I.; Kovanda, F.; Lang, K.; Demel, J. Beilstein J. Nanotechnol. 2018, 9, 2960–2967. doi:10.3762/bjnano.9.275
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 634.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Songca, S. P. Synthesis and applications of metal organic frameworks in photodynamic therapy. Journal of Photochemistry and Photobiology 2024, 23, 100245. doi:10.1016/j.jpap.2024.100245
- Guan, L.; Liu, F.; Zhang, C.; Wang, W.; Zhang, J.; Liang, Q. Porphyrin-based metal-organic frameworks for cancer theranostics. Advanced Sensor and Energy Materials 2024, 3, 100123. doi:10.1016/j.asems.2024.100123
- Ponnusamy, T. A.; Vadivel, S.; Gomathinayagam, K.; Arumugam, S.; Arumugam, M.; Thangamani, R.; Natarajan, R.; Ravikumar, C.; Yadav, N. N. Hybrid nanomaterials as semiconductors. Hybrid Nanofillers for Polymer Reinforcement; Elsevier, 2024; pp 209–235. doi:10.1016/b978-0-323-99132-2.00006-6
- Songca, S. P. Synthesis and Applications of Metal Organic Frameworks in Photodynamic Therapy. Elsevier BV 2024. doi:10.2139/ssrn.4806714
- Wang, Z.; Cheng, Y.; Wang, C.; Guo, R.; You, J.; Zhang, H. Optimizing the performance of Fe-based metal-organic frameworks in photo-Fenton processes: Mechanisms, strategies and prospects. Chemosphere 2023, 339, 139673. doi:10.1016/j.chemosphere.2023.139673
- Han, D.; Liu, X.; Wu, S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chemical Society reviews 2022, 51, 7138–7169. doi:10.1039/d2cs00460g
- Ma, Y.; Qu, X.; Liu, C.; Xu, Q.; Tu, K. Metal-Organic Frameworks and Their Composites Towards Biomedical Applications. Frontiers in molecular biosciences 2021, 8, 805228. doi:10.3389/fmolb.2021.805228
- Wang, Z.; Sun, Q.; Liu, B.; Kuang, Y.; Gulzar, A.; He, F.; Gai, S.; Yang, P.; Lin, J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews 2021, 439, 213945. doi:10.1016/j.ccr.2021.213945
- Kloda, M.; Ondrušová, S.; Lang, K.; Demel, J. Phosphinic acids as building units in materials chemistry. Coordination Chemistry Reviews 2021, 433, 213748. doi:10.1016/j.ccr.2020.213748
- Falsafi, M.; Saljooghi, A. S.; Abnous, K.; Taghdisi, S. M.; Ramezani, M.; Alibolandi, M. Smart metal organic frameworks: focus on cancer treatment. Biomaterials science 2021, 9, 1503–1529. doi:10.1039/d0bm01839b
- Calori, I. R.; Bi, H.; Tedesco, A. C. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS applied bio materials 2021, 4, 195–228. doi:10.1021/acsabm.0c00945
- Hynek, J.; Chahal, M. K.; Payne, D. T.; Labuta, J.; Hill, J. P. Porous framework materials for singlet oxygen generation. Coordination Chemistry Reviews 2020, 425, 213541. doi:10.1016/j.ccr.2020.213541
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin‐Based Metal–Organic Frameworks for Biomedical Applications. Angewandte Chemie (International ed. in English) 2020, 60, 5010–5035. doi:10.1002/anie.201909880
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin-basierte Metall-organische Gerüste für biomedizinische Anwendungen. Angewandte Chemie 2020, 133, 5064–5091. doi:10.1002/ange.201909880
- Petrov, O. V.; Chlan, V.; Rohlíček, J.; Demel, J.; Veselý, J.; Lang, J. Exploring Structural Disorders in Aluminum-Containing Metal–Organic Frameworks: Comparison of Solid-State 27Al NMR Powder Spectra to DFT Calculations on Bulk Periodic Structures. The Journal of Physical Chemistry C 2020, 124, 12569–12579. doi:10.1021/acs.jpcc.0c03000
- Taubert, A.; Leroux, F.; Rabu, P.; de Zea Bermudez, V. Advanced hybrid nanomaterials. Beilstein journal of nanotechnology 2019, 10, 2563–2567. doi:10.3762/bjnano.10.247