Supporting Information
Supporting Information File 1: Additional experimental data and experimental schemes. | ||
Format: PDF | Size: 510.8 KB | Download |
Cite the Following Article
Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications
Ruiyuan Zhuang, Shanshan Yao, Maoxiang Jing, Xiangqian Shen, Jun Xiang, Tianbao Li, Kesong Xiao and Shibiao Qin
Beilstein J. Nanotechnol. 2018, 9, 262–270.
https://doi.org/10.3762/bjnano.9.28
How to Cite
Zhuang, R.; Yao, S.; Jing, M.; Shen, X.; Xiang, J.; Li, T.; Xiao, K.; Qin, S. Beilstein J. Nanotechnol. 2018, 9, 262–270. doi:10.3762/bjnano.9.28
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Awan, A.; Baig, A.; Zubair, M.; Rahdar, A.; Nazar, M. F.; Farooqi, A. S.; Shalan, A. E.; Lanceros-Méndez, S.; Zafar, M. N. Green synthesis of molybdenum-based nanoparticles and their applications in energy conversion and storage: A review. International Journal of Hydrogen Energy 2022, 47, 31014–31057. doi:10.1016/j.ijhydene.2021.10.076
- Hussein-Al-Ali, S. H.; Hussein Alali, S. H.; Al-Ani, R.; Alkrad, J. A.; Abudoleh, S. M.; Abdallah Abualassal, Q. I.; Ayoub, R.; Hussein, M. Z.; Bullo, S.; Palanisamy, A. Betulinic Acid-Graphene Oxide Nanocomposites for Cancer Treatment. Science of Advanced Materials 2021, 13, 2138–2148. doi:10.1166/sam.2021.4115
- Tong, Z.; Huang, L.; Lei, W.; Zhang, H.; Zhang, S. Carbon-containing electrospun nanofibers for lithium–sulfur battery: Current status and future directions. Journal of Energy Chemistry 2021, 54, 254–273. doi:10.1016/j.jechem.2020.05.059
- Choi, C.; Lee, D. Y.; Park, J. B.; Kim, D. W. Separators Modified Using MoO2@Carbon Nanotube Nanocomposites as Dual-Mode Li-Polysulfide Anchoring Materials for High-Performance Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2020, 8, 15134–15148. doi:10.1021/acssuschemeng.0c03835
- Sharma, H.; Mondal, S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. International journal of molecular sciences 2020, 21, 6280. doi:10.3390/ijms21176280
- Wang, M.; Yang, H.; Shen, K.; Xu, H.; Wang, W.; Yang, Z.; Zhang, L.; Chen, J.; Huang, Y.; Chen, M.; Mitlin, D.; Li, X. Stable Lithium Sulfur Battery Based on In Situ Electrocatalytically Formed Li2S on Metallic MoS2–Carbon Cloth Support. Small Methods 2020, 4, 2000353. doi:10.1002/smtd.202000353
- Yao, S.; Guo, R.; Wu, Z.; Liu, M.; Qian, X.; Shen, X.; Li, T.; Wang, L.; Yanhua, W.; Qin, S. Fabrication of Magnéli phase Ti 4 O 7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode. Journal of Electroceramics 2020, 44, 154–162. doi:10.1007/s10832-020-00206-7
- Yao, S.; Zhang, C.; Xie, F.; Xue, S.; Gao, K.; Guo, R.; Shen, X.; Li, T.; Qin, S. Hybrid Membrane with SnS2 Nanoplates Decorated Nitrogen-Doped Carbon Nanofibers as Binder-Free Electrodes with Ultrahigh Sulfur Loading for Lithium Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2020, 8, 2707–2715. doi:10.1021/acssuschemeng.9b06064
- Wu, Z.; Yao, S.; Guo, R.; Li, Y.; Zhang, C.; Shen, X.; Li, T.; Qin, S. Freestanding graphitic carbon nitride-based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries. International Journal of Energy Research 2020, 44, 3110–3121. doi:10.1002/er.5150
- Gu, X.; Lai, C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Materials 2019, 23, 190–224. doi:10.1016/j.ensm.2019.05.013
- Liu, M.; Deng, N.; Ju, J.; Fan, L.; Wang, L.; Li, Z.; Zhao, H.; Yang, G.; Kang, W.; Yan, J.; Cheng, B. A Review: Electrospun Nanofiber Materials for Lithium-Sulfur Batteries. Advanced Functional Materials 2019, 29, 1905467. doi:10.1002/adfm.201905467
- Yao, S.; Tang, H.; Liu, M.; Chen, L.-l.; Jing, M.; Shen, X.; Li, T.; Jinli, T. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries. Journal of Alloys and Compounds 2019, 788, 639–648. doi:10.1016/j.jallcom.2019.02.236
- Xue, S.; Yao, S.; Jing, M.; Zhu, L.; Shen, X.; Li, T.; YiLiu, Z. Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochimica Acta 2019, 299, 549–559. doi:10.1016/j.electacta.2019.01.044
- Astle, M. A.; Rance, G. A.; Loughlin, H. J.; Peters, T. D.; Khlobystov, A. N. Molybdenum Dioxide in Carbon Nanoreactors as a Catalytic Nanosponge for the Efficient Desulfurization of Liquid Fuels. Advanced Functional Materials 2019, 29, 1808092. doi:10.1002/adfm.201808092
- Yao, S.; Xue, S.; Peng, S.; Jing, M.; Shen, X.; Li, T.; YiLiu, Z. Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. International Journal of Energy Research 2019, 43, 1892–1902. doi:10.1002/er.4389
- Zhuang, R.; Yao, S.; Shen, X.; Li, T.; Qin, S.; Yang, J. Electrospun β-Mo 2 C/CNFs as an efficient sulfur host for rechargeable lithium sulfur battery. Journal of Materials Science: Materials in Electronics 2019, 30, 4626–4633. doi:10.1007/s10854-019-00755-w
- Zhuang, R.; Yao, S.; Shen, X.; Li, T. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery. Journal of Electroanalytical Chemistry 2019, 833, 441–448. doi:10.1016/j.jelechem.2018.12.009
- Yao, S.; Xue, S.; Peng, S.; Guo, R.; Wu, Z.; Shen, X.; Li, T.; Wang, L. Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Applied Physics A 2018, 124, 758. doi:10.1007/s00339-018-2189-x