Characterization and influence of hydroxyapatite nanopowders on living cells

Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

Cite the Following Article

Characterization and influence of hydroxyapatite nanopowders on living cells
Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

How to Cite

Oberbek, P.; Bolek, T.; Chlanda, A.; Hirano, S.; Kusnieruk, S.; Rogowska-Tylman, J.; Nechyporenko, G.; Zinchenko, V.; Swieszkowski, W.; Puzyn, T. Beilstein J. Nanotechnol. 2018, 9, 3079–3094. doi:10.3762/bjnano.9.286

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Nisar, S. S.; Choe, H.-C. TiO2 coatings doped with MoS2 nanoparticles using plasma electrolytic oxidation on Ti–6Al–4V alloy: Application for enhanced and functional bio-implant surface. Journal of Materials Research and Technology 2024, 33, 2035–2056. doi:10.1016/j.jmrt.2024.09.185
  • Nobakhti, S. Nano-scale modeling of energy dissipation in a single lamella reveals the significant contribution of collagen-mineral sliding to intrinsic bone toughness. Mechanics of Advanced Materials and Structures 2024, 1–20. doi:10.1080/15376494.2024.2395506
  • Akhmetshina, T.; Schäublin, R. E.; Rich, A. M.; Berger, L.; Zeng, P.; Rodriguez‐Fernandez, I.; Phillips, N. W.; Löffler, J. F. Quantitative Imaging of Magnesium Biodegradation by 3D X‐Ray Ptychography and Electron Microscopy. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202408869
  • Skierbiszewska, K.; Szałaj, U.; Turek, B.; Sych, O.; Jasiński, T.; Łojkowski, W.; Domino, M. Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR. Nanomedicine : nanotechnology, biology, and medicine 2024, 61, 102765. doi:10.1016/j.nano.2024.102765
  • Ibrahim, A. Z.; Hussein, A. S.; Said Gulam Khan, H. B.; Ghazali, N. Antibacterial activity of microwave synthesized hydroxyapatite against cariogenic bacteria: A preliminary study. The Saudi dental journal 2024, 36, 1117–1122. doi:10.1016/j.sdentj.2024.06.004
  • Nisar, S. S.; Choe, H.-C. Mechanical hydroxyapatite coatings on PEO-treated Ti–6Al–4V alloy for enhancing implant's surface bioactivity. Ceramics International 2024, 50, 17703–17719. doi:10.1016/j.ceramint.2024.02.259
  • Neel, E. A. A.; El-Damanhoury, H. M.; Hossain, K. M. Z.; Alawadhi, H.; ALMisned, G.; Tekin, H. O. An assessment of microstructure, dentinal tubule occlusion and X-ray attenuation properties of Nd:YAG laser-enhanced titanium-doped phosphate glass and nano-hydroxyapatite pastes. Applied Physics A 2024, 130. doi:10.1007/s00339-024-07487-7
  • Fotoohi, M.; Hayati, R.; Mohassel, A.; Setoudeh, N. A brief study of electrical and biological properties of BNT6BT/ZnO-HA Composite. Journal of Alloys and Compounds 2024, 980, 173523. doi:10.1016/j.jallcom.2024.173523
  • Castillo-Borja, F.; Bravo-Sánchez, U. I. Aluminum adsorption using different models of hydroxyapatite via Molecular Dynamic simulations. Journal of Molecular Liquids 2024, 395, 123899. doi:10.1016/j.molliq.2023.123899
  • Wang, X.; Huang, S.; Peng, Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel, Switzerland) 2023, 10, 1367. doi:10.3390/bioengineering10121367
  • Hazra, A.; Baradwaj, G.; Dhanu, A. S.; Kuppannan, G.; Arthanari, M.; Kanthesh, B. M. Green Methods for the Development of Bone and Tissue Engineering-Based Biomaterials. Engineering Materials; Springer Nature Singapore, 2023; pp 73–93. doi:10.1007/978-981-99-6698-1_3
  • Lin, Y.; Balbaa, M.; Zeng, W.; Yang, Y.; Mahmoud, D.; Elbestawi, M.; Deng, F.; Chen, J. Osteogenic Properties of Titanium Alloy Ti6Al4V-Hydroxyapatite Composites Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance 2023, 33, 9664–9675. doi:10.1007/s11665-023-08632-8
  • Liu, X.; Liu, Y.; Qiang, L.; Ren, Y.; Lin, Y.; Li, H.; Chen, Q.; Gao, S.; Yang, X.; Zhang, C.; Fan, M.; Zheng, P.; Li, S.; Wang, J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. Journal of tissue engineering 2023, 14, 20417314231170371–204173142311703. doi:10.1177/20417314231170371
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v3
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v1
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v2
  • Osuchukwu, O. A.; Salihi, A.; Abdullahi, I.; Etinosa, P. O.; Obada, D. O. A comparative study of the mechanical properties of sol-gel derived hydroxyapatite produced from a novel mixture of two natural biowastes for biomedical applications. Materials Chemistry and Physics 2023, 297, 127434. doi:10.1016/j.matchemphys.2023.127434
  • Zhong, X.; Hu, W.; Hu, X.; Wang, H.; Liu, F.; Yang, Y. Biogenic hydroxyapatite synthesis by Bacillus subtilis: An efficient passivator for the reduction of cadmium contamination in agricultural soil. The Canadian Journal of Chemical Engineering 2023, 101, 4385–4394. doi:10.1002/cjce.24775
  • Hernández-Moreno, D.; Navas, J. M.; Fernández-Cruz, M. L. Short and long-term effects of nanobiomaterials in fish cell lines. Applicability of RTgill-W1. Chemosphere 2022, 309, 136636. doi:10.1016/j.chemosphere.2022.136636
  • Hossain, M. S.; Hasan, M. M.; Mahmud, M.; Mobarak, M. B.; Ahmed, S. Assessment of crystallite size of UV-synthesized hydroxyapatite using different model equations. Chemical Papers 2022, 77, 463–471. doi:10.1007/s11696-022-02501-9
Other Beilstein-Institut Open Science Activities