The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

Stefan Fringes, Felix Holzner and Armin W. Knoll
Beilstein J. Nanotechnol. 2018, 9, 301–310. https://doi.org/10.3762/bjnano.9.30

Cite the Following Article

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion
Stefan Fringes, Felix Holzner and Armin W. Knoll
Beilstein J. Nanotechnol. 2018, 9, 301–310. https://doi.org/10.3762/bjnano.9.30

How to Cite

Fringes, S.; Holzner, F.; Knoll, A. W. Beilstein J. Nanotechnol. 2018, 9, 301–310. doi:10.3762/bjnano.9.30

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 475.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Weinbrenner, P.; Quellmalz, P.; Giese, C.; Flacke, L.; Müller, M.; Althammer, M.; Geprägs, S.; Gross, R.; Reinhard, F. Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale. Quantum Science and Technology 2024, 10, 15037. doi:10.1088/2058-9565/ad93fa
  • Figueiredo da Silva, J.; Bacheva, V.; Drechsler, U.; Nicollier, P.; Reidt, S.; Fotiadis, D.; Knoll, A.; Wolf, H. Fabrication of a hybrid device for the integration of light-triggered proton pumps. Micro and Nano Engineering 2024, 23, 100250. doi:10.1016/j.mne.2024.100250
  • Nicollier, P. M.; Ratschow, A. D.; Ruggeri, F.; Drechsler, U.; Hardt, S.; Paratore, F.; Knoll, A. W. Gate Electrodes Enable Tunable Nanofluidic Particle Traps. The journal of physical chemistry letters 2024, 15, 4151–4157. doi:10.1021/acs.jpclett.4c00278
  • Ruggeri, F.; Schwemmer, C.; Stauffer, M.; Nicollier, P. M.; Figueiredo da Silva, J.; Bosshart, P. D.; Kochems, K.; Fotiadis, D.; Knoll, A.; Wolf, H. Placement of Biological Membrane Patches in a Nanofluidic Gap With Control Over Position and Orientation. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202200941
  • Zhang, Z.; Ducker, W. A. Molecular Diffusion of Ions in Nanoscale Confinement. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 5656–5662. doi:10.1021/acs.langmuir.2c00248
  • Mhanna, R.; Giroux, M.; Livi, K. J. T.; Wang, C.; Fluerasu, A.; Wiegart, L.; Zhang, Y.; Sutton, M.; Leheny, R. L. Extremely Slow Diffusion of Gold Nanoparticles under Confinement in Mesoporous Silica. The Journal of Physical Chemistry C 2022, 126, 3614–3622. doi:10.1021/acs.jpcc.2c00090
  • Meza, J. M. H.; Cordero, J. R. V.; de los Ángeles Ramirez Saito, M.; Espinoza, S. A.; Arauz-Lara, J. L.; Soto, B. Y. Particle/wall electroviscous effects at the micron scale: comparison between experiments, analytical and numerical models. Journal of physics. Condensed matter : an Institute of Physics journal 2021, 34, 94001–094001. doi:10.1088/1361-648x/ac3cef
  • Nicollier, P.; Schwemmer, C.; Ruggeri, F.; Widmer, D.; Ma, X.; Knoll, A. W. Nanofluidic rocking Brownian motors for multi-channel separation of spherical nanoparticles with nanometer scale resolution. In Optical Trapping and Optical Micromanipulation XVIII, SPIE, 2021; pp 62–68. doi:10.1117/12.2593705
  • Höller, C.; Schnoering, G.; Eghlidi, H.; Suomalainen, M.; Greber, U. F.; Poulikakos, D. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. Science advances 2021, 7. doi:10.1126/sciadv.abd8758
  • Avni, Y.; Komura, S.; Andelman, D. Brownian motion of a charged colloid in restricted confinement. Physical review. E 2021, 103, 042607. doi:10.1103/physreve.103.042607
  • Nicollier, P.; Schwemmer, C.; Ruggeri, F.; Widmer, D.; Ma, X.; Knoll, A. W. Nanometer-Scale-Resolution Multichannel Separation of Spherical Particles in a Rocking Ratchet with Increasing Barrier Heights. Physical Review Applied 2021, 15, 034006. doi:10.1103/physrevapplied.15.034006
  • Behjatian, A.; Bespalova, M. I.; Karedla, N.; Krishnan, M. Electroviscous effect for a confined nanosphere in solution. Physical review. E 2020, 102, 042607. doi:10.1103/physreve.102.042607
  • Jiang, S.; Zhao, J.; Förster, R.; Weidlich, S.; Plidschun, M.; Kobelke, J.; Ando, R. F.; Schmidt, M. A. Three dimensional spatiotemporal nano-scale position retrieval of the confined diffusion of nano-objects inside optofluidic microstructured fibers. Nanoscale 2020, 12, 3146–3156. doi:10.1039/c9nr10351a
  • Fringes, S.; Schwemmer, C.; Rawlings, C.; Knoll, A. W. Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution. Nano letters 2019, 19, 8855–8861. doi:10.1021/acs.nanolett.9b03687
  • Gerspach, M. A.; Mojarad, N.; Sharma, D.; Ekinci, Y.; Pfohl, T. Pneumatically Controlled Nanofluidic Devices for Contact‐Free Trapping and Manipulation of Nanoparticles. Particle & Particle Systems Characterization 2018, 35, 1800161. doi:10.1002/ppsc.201800161
  • Schwemmer, C.; Fringes, S.; Duerig, U. T.; Ryu, Y. K.; Knoll, A. W. Experimental Observation of Current Reversal in a Rocking Brownian Motor. Physical review letters 2018, 121, 104102. doi:10.1103/physrevlett.121.104102
  • Skaug, M. J.; Schwemmer, C.; Fringes, S.; Rawlings, C.; Knoll, A. W. Nanofluidic Rocking Brownian Motors. Science (New York, N.Y.) 2018, 359, 1505–1508. doi:10.1126/science.aal3271
Other Beilstein-Institut Open Science Activities