Supporting Information
Supporting Information File 1:
Video 1.
Lotus tubule growth on HOPG from 0.8 mg/mL chloroform wax solution. Only (forward) trace images are used for making videos. Size = 1.35 × 1.35 µm, scan rate = 0.796 Hz, 512 lines/image. |
||
Format: MOV | Size: 497.0 KB | Download |
Supporting Information File 2:
Video 2.
Lotus tubule growth on HOPG from 1 mg/mL chloroform wax solution. Only trace images are used for making videos. Size = 2.5 × 2.5 µm, scan rate = 0.512 Hz, 512 lines/image. |
||
Format: MOV | Size: 372.4 KB | Download |
Supporting Information File 3:
Video 3.
Lotus tubule growth on HOPG from 10 mg/mL chloroform wax solution. Only trace images are used for making videos. Size = 4.9 × 4.9 µm, scan rate = 0.512 Hz, 512 lines/image. |
||
Format: MOV | Size: 637.9 KB | Download |
Supporting Information File 4:
Video 4.
Lotus tubule growth on HOPG from 0.2 mg/mL chloroform wax solution. Only trace images are used for making videos. Size = 3.25 × 3.25 µm, scan rate = 0.519 Hz, 512 lines/image. |
||
Format: MOV | Size: 509.1 KB | Download |
Supporting Information File 5:
Video 5.
Lotus tubule growth on HOPG from 0.8 mg/mL water saturated chloroform wax solution. Only trace images are used for making videos. Size = 3 × 3 µm, scan rate = 1.04 Hz, 512 lines/image. |
||
Format: AVI | Size: 21.8 MB | Download |
Supporting Information File 6:
Video 6.
Lotus tubule growth on HOPG from 0.8 mg/mL (NH4)2SO4 salt saturated chloroform wax solution. Only trace images are used for making videos. Size = 1.2 × 1.2 µm, scan rate = 1.04 Hz, 512 lines/image. |
||
Format: MOV | Size: 107.4 KB | Download |
Supporting Information File 7:
Video 7.
Lotus tubule growth on HOPG from 0.8 mg/mL (NH4)2SO4/water saturated chloroform wax solution. Only trace images are used for making videos. Size = 2.05 × 2.05 µm, scan rate = 1.04 Hz, 512 lines/image. |
||
Format: MOV | Size: 494.4 KB | Download |
Cite the Following Article
Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy
Sujit Kumar Dora, Kerstin Koch, Wilhelm Barthlott and Klaus Wandelt
Beilstein J. Nanotechnol. 2018, 9, 468–481.
https://doi.org/10.3762/bjnano.9.45
How to Cite
Dora, S. K.; Koch, K.; Barthlott, W.; Wandelt, K. Beilstein J. Nanotechnol. 2018, 9, 468–481. doi:10.3762/bjnano.9.45
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Middleton, R.; Sinnott-Armstrong, M. Structural color in fruits: Biomaterials to inspire physical optics. APL Photonics 2024, 9. doi:10.1063/5.0208528
- Dora, S.; Wandelt, K. Influence of water on the growth of epicuticular wax layers from Lotus leaves: Model studies on inorganic surfaces. Encyclopedia of Solid-Liquid Interfaces; Elsevier, 2024; pp 530–551. doi:10.1016/b978-0-323-85669-0.00140-9
- Huth, M. A.; Huth, A.; Koch, K. Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass. Beilstein journal of nanotechnology 2021, 12, 939–949. doi:10.3762/bjnano.12.70
- Bukhanov, E.; Gurevich, Y.; Krakhalev, M.; Shabanov, D. Modeling optical properties of plant epicuticular wax. In 2020 International Conference on Information Technology and Nanotechnology (ITNT), IEEE, 2020; pp 1–7. doi:10.1109/itnt49337.2020.9253272