Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

Supporting Information

Supporting Information features emission spectra of cinnamon, red chilli and turmeric C-dots, as well as cell viability studies and ESI-QTOF spectra of black pepper C-dots and piperine standard.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 764.7 KB Download

Cite the Following Article

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition
Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

How to Cite

Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. d. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T. Beilstein J. Nanotechnol. 2018, 9, 530–544. doi:10.3762/bjnano.9.51

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 934.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • McLoughlin, C. D.; Nevins, S.; Stein, J. B.; Khakbiz, M.; Lee, K. Overcoming the Blood–Brain Barrier: Multifunctional Nanomaterial‐Based Strategies for Targeted Drug Delivery in Neurological Disorders. Small Science 2024. doi:10.1002/smsc.202400232
  • Pei, S.; Lu, Z.; Sun, W.; Yan, K.; Zhou, J.; Sun, C.; Huang, J.; Luo, K.; Yang, X. Preparation, Characterization, and Antibacterial Activity of Rhodiola Carbon Dots. Russian Journal of General Chemistry 2024, 94, 1991–1996. doi:10.1134/s1070363224080127
  • Gupta, P. K.; Ranganath, K. V. S. Synthesis of fluorescent carbon dots using bio-waste powder for photo-degradation of dyes: simulation and mechanistic study. New Journal of Chemistry 2024, 48, 16527–16537. doi:10.1039/d4nj03286a
  • Mowery, J. L.; Chen, J. Recent Biomedical Applications of Carbon Quantum Dots in Cancer Treatment. The Journal of Physical Chemistry C 2024, 128, 16291–16301. doi:10.1021/acs.jpcc.4c04847
  • Ravindran, S.; Khan, D.; Khodja, A.; Terro, T.; Radha, R.; Diab, R.; Ialyshev, V.; Al-Sayah, M. H. Harnessing piperine for enhanced antimicrobial activity of carbon dot-modified cellulose fibers. Discover Applied Sciences 2024, 6. doi:10.1007/s42452-024-06187-4
  • Ghahremani, H.; Molaei, M. J.; Salimi, E. Gadolinium-doped carbon quantum dots derived from dextran for magnetic resonance imaging (MRI) contrast agent and fluorescence imaging. Optical Materials 2024, 155, 115872. doi:10.1016/j.optmat.2024.115872
  • Chattaraj, A.; Mishra, V.; Mishra, Y. Carbon Nanotubes in the Diagnosis and Treatment of Ovarian Cancer. Indian Journal of Microbiology 2024. doi:10.1007/s12088-024-01367-7
  • Lad, U. M.; Dave, D. J.; Desai, B. N.; Suthar, D. H.; Modi, C. K. L-Arginine Doped Carbon Nanodots from Cinnamon Bark for Improved Fluorescent Yeast Cell Imaging. Journal of fluorescence 2024. doi:10.1007/s10895-024-03799-2
  • Banihashemi Jozdani, S. M.; Hashemian, Z.; Ebrahim Damavandi, S.; Elyasigorji, Z.; Vosough, M. Emerging Trends in the Biomedical Application of Carbon-based Nanomaterials. Nano Biomedicine and Engineering 2024. doi:10.26599/nbe.2024.9290091
  • Salve, P. L.; Bhinge, S. D.; Bhutkar, M. A. Carbon Dots an Integrative Nanostructure for Fluorescent Bio-imaging, Targeted Delivery of Medication and Phototherapy in Malignancy: A Review. Nanoscience & Nanotechnology-Asia 2024, 14. doi:10.2174/0122106812278995231223081406
  • Li, X.; He, J. Advances in the application of biosynthesized carbon dots as fluorescent probes for bioimaging. Materials Science-Poland 2024, 42, 62–91. doi:10.2478/msp-2024-0009
  • Zhao, W.; Huang, C.; Guo, X.; Zhu, Y.; Li, Y.; Duan, Y.; Gao, J. A Fluorescence Biosensor Based on Carbon Quantum Dots Prepared from Pomegranate Peel and T-Hg2+-T Mismatch for Hg2+ Detection. Journal of fluorescence 2024. doi:10.1007/s10895-024-03645-5
  • Bartkowski, M.; Zhou, Y.; Nabil Amin Mustafa, M.; Eustace, A. J.; Giordani, S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202303982. doi:10.1002/chem.202303982
  • Deb, A.; Chowdhury, D. Biogenic Carbon Quantum Dots: Synthesis and Applications. Current medicinal chemistry 2024, 31, 3899–3924. doi:10.2174/0929867330666230608105201
  • Sahu, V.; Sahoo, S. K. Biogenic synthesis of carbon dots with inbuilt biological activity. Next Nanotechnology 2024, 5, 100034. doi:10.1016/j.nxnano.2023.100034
  • Padmaja, M.; Shyamala, P.; Praveena, V. D.; Tejaswini, G. Green synthesized Fe3O4@CD nanocomposites using Acacia caesia leaves: In vitro biological properties and cytotoxicity assessment. Next Nanotechnology 2024, 6, 100093. doi:10.1016/j.nxnano.2024.100093
  • Stalika, E.; Chatzimitakos, T.; Stalikas, C. Εndogenous and artificial carbon dots from edible sources: Synthesis, applications in biomedicine and uses as fluorescent analytical probes. Comprehensive Analytical Chemistry; Elsevier, 2024. doi:10.1016/bs.coac.2024.06.001
  • Sudheshna, C. S.; Kambhampati, J. M.; Samanth, C.; Chaitra, G.; Pulipelli, H. R.; Vishal, B.; Nagendranatha Reddy, C.; Mandal, S. K.; Suroju, D. P.; Agrawal, D. C.; Mishra, B. Green carbon nanomaterials and their application in food, agriculture, and biomedicine. Carbon-Based Nanomaterials in Biosystems; Elsevier, 2024; pp 61–89. doi:10.1016/b978-0-443-15508-6.00009-9
  • Smrithi, S. P.; Kottam, N.; Madhu, G. M.; Prasanth, G. Development of Fe (Iii) Sensor System Using Carbon Nanodots Derived From Plectranthus amboinicus. Journal of Mines, Metals and Fuels 2023, 2342–2347. doi:10.18311/jmmf/2023/36260
  • Wang, C.-Y.; Ndraha, N.; Wu, R.-S.; Liu, H.-Y.; Lin, S.-W.; Yang, K.-M.; Lin, H.-Y. An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. International journal of molecular sciences 2023, 24, 16579. doi:10.3390/ijms242316579

Patents

  • ZHOU NINGLIN; SONG QIUXIAN; SHEN JIAN; ZHANG QICHENG; SUN BAOHONG; SHI SHAOZE; XU WANG; LU TINGYU. Carbon quantum dot with Pericarpium Zanthoxyli as carbon source as well as preparation method and application of carbon quantum dot. CN 113025318 A, June 25, 2021.
Other Beilstein-Institut Open Science Activities