Cite the Following Article
Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications
Anna Różycka, Agnieszka Iwan, Krzysztof Artur Bogdanowicz, Michal Filapek, Natalia Górska, Damian Pociecha, Marek Malinowski, Patryk Fryń, Agnieszka Hreniak, Jakub Rysz, Paweł Dąbczyński and Monika Marzec
Beilstein J. Nanotechnol. 2018, 9, 721–739.
https://doi.org/10.3762/bjnano.9.67
How to Cite
Różycka, A.; Iwan, A.; Bogdanowicz, K. A.; Filapek, M.; Górska, N.; Pociecha, D.; Malinowski, M.; Fryń, P.; Hreniak, A.; Rysz, J.; Dąbczyński, P.; Marzec, M. Beilstein J. Nanotechnol. 2018, 9, 721–739. doi:10.3762/bjnano.9.67
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 2.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Karan, A. K.; Sahoo, D.; Manik, N. B. Investigating the effects of TiO2 nanoparticles on the barrier inhomogeneity of brilliant-blue fruit dye-base solar cell. Current Applied Physics 2024, 59, 95–104. doi:10.1016/j.cap.2023.12.009
- Karan, A. K.; Sahoo, D.; Sen, S.; Rakshit, S.; Manik, N. B. Modification of barrier height inhomogeneity in the presence of titanium dioxide nanoparticles on Carmoisine dye-based Schottky device. Surfaces and Interfaces 2024, 46, 103952. doi:10.1016/j.surfin.2024.103952
- Karan, A. K.; Sahoo, D.; Manik, N. B. Enhanced electrical conductivity and charge conduction mechanisms in Nano-cubical Sunset Yellow dye incorporated with titanium dioxide nanoparticles. Physica B: Condensed Matter 2024, 674, 415570. doi:10.1016/j.physb.2023.415570
- Karan, A. K.; Sahoo, D.; Sen, S.; Rakshit, S.; Manik, N. B. Effect of titanium-dioxide nanoparticle on Richardson constant and barrier height of tartrazine dye based Schottky device. Discover Materials 2023, 3. doi:10.1007/s43939-023-00040-y
- Karan, A. K.; Sahoo, D.; Sen, S.; Rakshit, S.; Manik, N. B. Effect of Titanium-Dioxide nanoparticle on Richardson Constant and Barrier Height of Tartrazine Dye based Schottky Device. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2512677/v1
- Iwan, A.; Pellowski, W.; Bogdanowicz, K. A. Conversion of Radiophotoluminescence Irradiation into Electricity in Photovoltaic Cells. A Review of Theoretical Considerations and Practical Solutions. Energies 2021, 14, 6186. doi:10.3390/en14196186
- Urban, S.; Lalik, S.; Różycka, A.; Iwan, A.; Marzec, M. Dielectric studies in the isotropic phase of six symmetrical azomethines with various number of benzene rings. Influence of the ionic conductivity. Journal of Molecular Liquids 2021, 328, 115477. doi:10.1016/j.molliq.2021.115477
- Sen, S.; Manik, N. B. Effect of Different Concentrations of Titanium Dioxide Nanoparticles on the Potential Barrier of Organic Device. European Journal of Formal Sciences and Engineering 2021, 4, 1–10. doi:10.26417/633bir74y
- Ünlü, B.; Özacar, M. Effect of Cu and Mn amounts doped to TiO2 on the performance of DSSCs. Solar Energy 2020, 196, 448–456. doi:10.1016/j.solener.2019.12.043
- Sharma, V.; Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Oxygen non-stoichiometry in TiO2 and ZnO nano rods: Effect on the photovoltaic properties of dye and Sb2S3 sensitized solar cells. Solar Energy 2019, 191, 400–409. doi:10.1016/j.solener.2019.09.009
- Kang, L.; Liu, H.; Fu, S.; Li, X.; Li, N.; Wu, J.; Wang, X.; Zhang, X.; Li, J. Updatable colorful display of vector hologram in azo-poly(9-vinylcarbazole)-TiO 2 nanocomposite films. Journal of Applied Polymer Science 2019, 137, 48537. doi:10.1002/app.48537
- Różycka, A.; Bogdanowicz, K. A.; Górska, N.; Rysz, J.; Marzec, M.; Iwan, A.; Pich, R.; Januszko, A. Influence of TiO2 Nanoparticles on Liquid Crystalline, Structural and Electrochemical Properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine. Materials (Basel, Switzerland) 2019, 12, 1097. doi:10.3390/ma12071097
- Kotowicz, S.; Korzec, M.; Siwy, M.; Golba, S.; Małecki, J. G.; Janeczek, H.; Mackowski, S.; Bednarczyk, K.; Libera, M.; Schab-Balcerzak, E. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes and Pigments 2018, 158, 65–78. doi:10.1016/j.dyepig.2018.05.017
- Li, H.; Li, L.; Luan, X.; Peng, H.; Zou, Y. A novel small molecule based on naphtho[1,2-b:5,6-b']difuran for efficient photovoltaics. Solar Energy 2018, 173, 1107–1114. doi:10.1016/j.solener.2018.08.054