Automated image segmentation-assisted flattening of atomic force microscopy images

Yuliang Wang, Tongda Lu, Xiaolai Li and Huimin Wang
Beilstein J. Nanotechnol. 2018, 9, 975–985. https://doi.org/10.3762/bjnano.9.91

Cite the Following Article

Automated image segmentation-assisted flattening of atomic force microscopy images
Yuliang Wang, Tongda Lu, Xiaolai Li and Huimin Wang
Beilstein J. Nanotechnol. 2018, 9, 975–985. https://doi.org/10.3762/bjnano.9.91

How to Cite

Wang, Y.; Lu, T.; Li, X.; Wang, H. Beilstein J. Nanotechnol. 2018, 9, 975–985. doi:10.3762/bjnano.9.91

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 937.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Chang, Y.; Liu, Z.; Wu, Y.; Fang, Y. Deep-Learning-Based Automated Morphology Analysis With Atomic Force Microscopy. IEEE Transactions on Automation Science and Engineering 2024, 21, 7662–7673. doi:10.1109/tase.2023.3346887
  • Nečas, D. Self-consistent autocorrelation for finite-area bias correction in roughness measurement. Engineering Research Express 2024, 6, 25560–025560. doi:10.1088/2631-8695/ad5302
  • Gräfensteiner, P.; Friebel, J.; Ditscherlein, L.; Furat, O.; Peuker, U. A.; Schmidt, V. An AFM-based approach for quantification of guest particle deformation during mechano-fusion. Powder Technology 2024, 434, 119293. doi:10.1016/j.powtec.2023.119293
  • Lu, M.; Venkat, S. N.; Augustino, J.; Meshnick, D.; Jimenez, J. C.; Tripathi, P. K.; Nihar, A.; Orme, C. A.; French, R. H.; Bruckman, L. S.; Wu, Y. Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images. Integrating Materials and Manufacturing Innovation 2023, 12, 371–385. doi:10.1007/s40192-023-00320-8
  • Li, X.; Wang, F.; Xia, C.; The, H. L.; Bomer, J. G.; Wang, Y. Laser Controlled Manipulation of Microbubbles on a Surface with Silica-Coated Gold Nanoparticle Array. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2302939. doi:10.1002/smll.202302939
  • Xia, C.; Wang, R.; Zhu, P.; Wang, F.; Dong, L.; Wang, H.; Wang, Y. Fabrication of gold nanoparticle decorated surfaces for controlled nucleation of plasmonic microbubbles. Surfaces and Interfaces 2023, 36, 102591. doi:10.1016/j.surfin.2022.102591
  • Ciurans-Oset, M.; Mundó-Tijeras, I.; Mouzon, J.; Akhtar, F. Use of AFM topography images to determine microindentation hardness of cast tungsten carbide powders. International Journal of Refractory Metals and Hard Materials 2022, 107, 105878. doi:10.1016/j.ijrmhm.2022.105878
  • Wu, Y.; Fang, Y.; Fan, Z.; Liu, C. Accurate Morphology Characterization Using Atomic Force Microscopy via Vertical Drift Correction and Illusory Slope Elimination. Microscopy and Microanalysis 2021, 27, 1366–1374. doi:10.1017/s1431927621012599
  • Wu, Y.; Yongchun, F.; Fan, Z.; Cunhuan, L. Accurate Morphology Characterization Using Atomic Force Microscopy via Vertical Drift Correction and Illusory Slope Elimination. Microscopy and Microanalysis 2021, 1–9.
  • Pietsch, M.; Christiaens, D.; Hajnal, J. V.; Tournier, J.-D. dStripe: Slice artefact correction in diffusion MRI via constrained neural network. Medical image analysis 2021, 74, 102255. doi:10.1016/j.media.2021.102255
  • Azuri, I.; Rosenhek-Goldian, I.; Regev-Rudzki, N.; Fantner, G. E.; Cohen, S. R. The role of convolutional neural networks in scanning probe microscopy: a review. Beilstein journal of nanotechnology 2021, 12, 878–901. doi:10.3762/bjnano.12.66
  • Watanabe-Nakayama, T.; Ono, K. Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation. Methods (San Diego, Calif.) 2021, 197, 4–12. doi:10.1016/j.ymeth.2021.06.006
  • Elkarkri, Y.; Li, X.; Zeng, B.; Lian, Z.; Zhou, J.; Wang, Y. Laser photonic nanojets triggered thermoplasmonic micro/nanofabrication of polymer materials for enhanced resolution. Nanotechnology 2021, 32, 145301. doi:10.1088/1361-6528/abd35b
  • Zeng, B.; Wang, Y.; Zaytsev, M. E.; Xia, C.; Zandvliet, H. J.; Lohse, D. Giant plasmonic bubbles nucleation under different ambient pressures. Physical review. E 2020, 102, 063109. doi:10.1103/physreve.102.063109
  • Pietsch, M.; Christiaens, D.; Hajnal, J. V.; Tournier, J.-D. dStripe: slice artefact correction in diffusion MRI via constrained neural network. Cold Spring Harbor Laboratory 2020. doi:10.1101/2020.10.20.347518
  • Wang, Y.; Lian, Z.; Cui, X.; Chen, B.; Li, X.; Li, M.; Zeng, B.; Bi, S. Visual sensing based ultra-high precision motion control with compensated mechanical drift across different stages. IEEE/ASME Transactions on Mechatronics 2020, 1. doi:10.1109/tmech.2020.2975039
  • Li, X.; Wang, Y.; Zaytsev, M. E.; Lajoinie, G.; Bomer, J. G.; Eijkel, J. C.; Zandvliet, H. J.; Zhang, X.; Lohse, D. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air. The journal of physical chemistry. C, Nanomaterials and interfaces 2019, 123, 23586–23593. doi:10.1021/acs.jpcc.9b05374
  • Wang, Y.; Zeng, B.; Zhao, Y.; Li, S.; Zhang, X. Formation of Polystyrene Microlenses via Transient Droplets from the Ouzo Effect for Enhanced Optical Imaging. The Journal of Physical Chemistry C 2019, 123, 14327–14337. doi:10.1021/acs.jpcc.9b00587
  • Zeng, B.; Wang, Y.; Zhang, X.; Lohse, D. Solvent Exchange in a Hele–Shaw Cell: Universality of Surface Nanodroplet Nucleation. The Journal of Physical Chemistry C 2019, 123, 5571–5577. doi:10.1021/acs.jpcc.9b00298
Other Beilstein-Institut Open Science Activities