Search results

Search for "CNTs" in Full Text gives 159 result(s) in Beilstein Journal of Nanotechnology.

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
PDF
Album
Review
Published 25 Sep 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • organic templates are examples of alternative ways to synthesize helical nano- or microfibers from various materials like carbon nanotubes (CNTs), ZnO or different polymers [8][48][49]. Here, we present a simple method for synthesizing helical chitosan microfibers with embedded magnetic nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • in a polymer to obtain a composite. Shokrieh et al. [10] carried out a systematic theoretical study to investigate the influence of carbon nanotubes (CNTs) on the CTE of CNT/epoxy, and the results indicate that the addition of 1 wt % CNT causes a significant decrease of the CTE of the matrix
PDF
Album
Full Research Paper
Published 20 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) can induce platelet activation by inducing depletion of intracellular Ca2+ [10][11], an effect that was hypothesised to be caused by the interaction of CNTs with plasma and dense tubular system membranes likely related to the fibrous shape [12]. On the
  • ], while platelet aggregation was observed for amorphous CNPs but not for the small-sized fullerenes [10]. Note however that limited information relating to the physicochemical properties of the materials was given in these studies, making a critical analysis of the results difficult. Moreover, while CNTs
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • mechanical properties, carbon-based materials were also reported for the functionalization of hollow capsules. When the microcapsules were embedded with carbon nanotubes (CNTs) in the shell, the rigidity of the shell was improved upon drying and resulted in freestanding structures. The capsules modified with
  • CNTs ruptured upon laser light irradiation [115]. The introduction of graphene oxide (GO) nanosheets with PDDA as multilayers caused the migration and rearrangement of chains compared to PDDA/PAA multilayers [116]. The PDDA/GO multilayers showed improved resistance to damage and maintained a defect
PDF
Album
Review
Published 27 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • metal-based technologies [28][29]. For example, carbon nanotubes (CNTs) have been well studied for their catalytic activity, although conflicting reports exist due to the presence of unavoidable metallic impurities present [30][31][32][33]. With the emergence of graphene, heteroatom doping in sp2
  • CNTs, graphene, etc. can be oxidized via chemical treatment, and these oxidized forms of sp2–sp3 carbon systems prefer peroxide formation in alkaline ORR process [25]. Such studies are supported by reports from other groups, where McCloskey et al. showed that sp2-hybridized carbon near-ring ether
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • in several fields [1][2][3][4][6][7][11][12][13][14][15][16]. BNNTs were first synthesized by Chopra et al. [20] in 1995 and they are considered as the structural analog to CNTs. BNNTs are of particular interest due to their remarkable mechanical properties (e.g., Young’s modulus of 1.22 TPa) and low
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • decoration of MWCNTs Prior to their deposition on the interdigitated electrode surface, the MWCNTs were treated by oxygen plasma to create oxygen vacancies on the walls of the CNTs in order to enhance their surface reactivity [14][15]. The detailed description of the experimental steps undertaken is
  • openings efficiently [23][24]. In fact, in Figure 2a we see that CNTs with a higher number of Au nanoparticles were at the surface of the CNT mat while those showing fewer particles were deeper in the CNT film. Also, in Figure 2c, we can observe a nanotube that crosses the centre of the image where all of
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • graphene, graphene oxide (GO) or carbon nanotubes (CNTs) in order to improve the charge–discharge process stability [11][12][13]. There are limited reports regarding a comparison of the intrinsic performance between these Ni–Co chalcogenides materials. Even pure Ni–Co chalcogenide nanomaterials have been
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • . deposited iron oxide on CNTs by atomic layer deposition (ALD) and the obtained CNTs@Fe2O3 presented a specific capacitance of 580.6 F·g−1 at 5 A·g−1 [21]. Zhang et al. used magnetron sputtering to prepare sandwich-like CNT@Fe2O3@C structures, and the composite exhibited a specific capacitance of 787.5 F·g−1
  • cathode were prepared. CNTs significantly improved the conductivity and enhanced the capacity of Fe2O3 up to 226 mAh·g−1 at 2 A·g−1, and capacity of NiO to 527 mAh·g−1 at 2 A·g−1. Furthermore, by assembling the two electrodes, an asymmetric supercapacitor (ASC) with a high energy density of 63.3 Wh·kg−1
  • Discussion Figure 1 shows the process of synthesizing cathode and anode, and finally, the asymmetric supercapacitor. The details can be seen in the Experimental section. Anode material CC-CNT@Fe2O3 CNTs were grown on CC by chemical vapour deposition (CVD). As shown in Figure 2a, CNTs grow homogeneously with
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • . Moreover, an appropriate heat management scheme has to be taken into account in real applications as it has been already shown for other nanomaterials [30][31]. Introducing support materials, such as graphene or carbon nanotubes (CNTs) can alleviate these problems and improve the performance of the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • Pei Wang Katarzyna Kulp Michael Bron Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Department of Chemistry, 06120 Halle, Germany 10.3762/bjnano.10.146 Abstract Hierarchically structured 3-dimensional electrodes based on branched carbon nanotubes (CNTs) are prepared on
  • a glassy carbon (GC) substrate in a sequence of electrodeposition and chemical vapor deposition (CVD) steps as follows: Primary CNTs are grown over electrodeposited iron by CVD followed by a second Fe deposition and finally the CVD growth of secondary CNTs. The prepared 3-dimensional CNT structures
  • (CNT/CNT/GC) exhibit enhanced double-layer capacitance and thus larger surface area compared to CNT/GC. Pt electrodeposition onto both types of electrodes yields a uniform and homogeneous Pt nanoparticle distribution. Each preparation step is followed by scanning electron microscopy, while the CNTs
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • [1][11][12]. Thus, the idea of controlling the features of composites by adding a small amount of nanoparticles to an LC matrix is of great interest from a physical point of view. Carbon nanotubes (CNTs) [13] are a popular material to be embedded in LCs [9][14][15][16][17]. Due to a large aspect
  • ratio the physical properties of this carbon nanomaterial vary greatly in different directions. In this sense, the anisotropic properties of CNTs (for example, thermal and electrical conductivities) are attractive for a wide range of applications, including nanoelectronics and optics [2]. A distinctive
  • feature of CNTs is their strong diamagnetism ( ≈ 10−5 to 10−4) [18][19][20][21][22][23]. In the majority of experimental publications [7][16][24][25][26] the planar type of anchoring between the nanotubes and the LC matrix is noted. For CNT suspensions based on nematic liquid crystals (NLCs) with positive
PDF
Album
Full Research Paper
Published 22 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • instance, graphene, CNTs, and buckypapers (10–25 µA·mM−1) [46][66][67], the external surface of functionalised HNTs (5.2 µA·mM−1) [20], a polymeric matrix (5 µA·mM−1) [68] or a chitosan-modified matrix (1.2 µA·mM−1) [69]. The crucial role of HNTs as protective containers for the enzymes was underlined by
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • , 31055 Toulouse Cedex 4, France 10.3762/bjnano.10.125 Abstract Sulfur- (S-CNT) and nitrogen-doped (N-CNT) carbon nanotubes have been produced by catalytic chemical vapor deposition (c-CVD) and were subject to an annealing treatment. These CNTs were used as supports for small (≈2 nm) Pt3M (M = Co or Ni
  • support, in combination with ILs, is also important to achieve high Pt dispersion, and functionalized carbons should be preferred, presumably because of their stronger interaction with the IL [28]. Carbon nanotubes (CNTs) are well known for their remarkable chemical and physical properties and appear to
  • be an interesting alternative to replace CB in fuel cell applications [29][30]. It has been described that CNTs could be used as resistant material to support nanostructured PtNi hollow particles, but it appears that the structure of the used CNT might be responsible for the large external diameter
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • ], and some studies assume that both functionalities contribute to enhancing the performance of the materials towards ORR [20]. In addition, a recent study with carbon nanotubes (CNTs) reported that an increase of the pyridinic-N/quaternary-N and pyridinic-N/pyrrolic-N ratios increases the
  • , depends on the precursors used and the method of synthesis applied. Nitrogen-doped carbon materials have been synthesized by applying different doping methods to different types of materials, such as CNTs [12][23][26], graphene [20][25][27], carbon aerogels [15][28], carbon nanofibers [29], carbon
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • InGaAs/GaAs-on-GaAs superlattice as a SA to realize 1557 nm, 1.2 ps, transformation-limited pulse generation [9]. Following this, carbon nanotubes (CNTs), graphene, topological insulators (TIs), transition metal disulfides (TMDs) and black phosphorus (BP) were used as SAs to realize passively mode-locked
PDF
Album
Full Research Paper
Published 20 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • hydrophobic graphene, which prompted us to investigate the direct non-covalent binding of streptavidin to our bare graphene hydrophobic surfaces. According to [13], streptavidin binds to the sidewalls of carbon nanotubes (CNTs) by means of hydrophobic interactions. It was expected it would bind also to
  • graphene, which is comparable to unfolded CNTs. This significantly simplified the functionalization process, since the EDC/NHS incubation of the plasma-treated graphene was omitted. In the present experiment (Figure 7), after the graphene growth, the samples were mounted in the peristaltic pump system and
PDF
Album
Full Research Paper
Published 29 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • Coal Salt Resources, Pingdingshan 467000, People′s Republic of China 10.3762/bjnano.10.85 Abstract MnO2–CuO–Fe2O3/CNTs catalysts, as a low-dimensional material, were fabricated by a mild redox strategy and used in denitration reactions. A formation mechanism of the catalysts was proposed. NO
  • conversions of 4% MnO2–CuO–Fe2O3/CNTs catalyst of 43.1–87.9% at 80–180 °C were achieved, which was ascribed to the generation of amorphous MnO2, CuO and Fe2O3, and a high surface-oxygen (Os) content. Keywords: amorphous materials; carbon nanotubes; low-dimensional materials; low-temperature catalysis; SCR
  • of electrostatic precipitator and desulfurizer, where the flue gas temperature is normally below 200 °C [9]. Therefore, it is of importance to develop a SCR catalyst with high catalytic activity below 200 °C. Carbon nanotubes (CNTs), a low-dimensional material, exhibit a one-dimensional tubular
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • is calculated in analogy to the energy of a collapsed carbon nanotube [17][30][49], Efold = k·a·l/2r2 where k is the curvature modulus (k = 1.4 eV for CNTs with radii smaller than 2.4 Å), a the arc length which is ≈ b = 15 nm, l the length of the curved region of 72 nm, and r the radius of curvature
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • the uniform dispersion of carbon nanotubes (CNTs) in Bi2Te3 [16]. Another group has also reported an enhancement of the Seebeck coefficient (S) in CNT/Bi2Te3 to 132 µV/K at 423 K [17]. In a recent report, a power factor of 43 µW·cm−1·K−2 for CuI-doped Bi2Te3 has been shown, which is higher than that
PDF
Album
Full Research Paper
Published 04 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • , pristine carbon nanotubes (CNTs) present some limitations for gas sensing. For example, carbon nanotube gas sensors often suffer from slow recovery, especially when operated at room temperature, which eventually results in baseline and response drift. For that reason, it is usually necessary to heat up the
  • gas sensitive nanomaterial to higher temperatures [3] or to irradiate the sensor employing ultraviolet (UV) light, in order to promote surface cleaning. Despite these efforts, sometimes CNTs present irreversible resistance changes due to the chemisorption of gas molecules. In addition, other problems
  • such as lack of selectivity, environmental variations (e.g., changes in humidity level) affecting sensor response, or the difficulty to detect gases characterized by low adsorption energies are often encountered [11]. In order to enhance their selectivity and/or their sensitivity, CNTs have been
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • (3D-RGO), showing a reversible capacity of 790 mAh·g−1 (at 0.2C) after 200 cycles [26]. It has been reported that three-dimensional carbon nanotubes/graphene–sulfur (3DCGS) is an excellent cathode template, revealing a final capacity of 975 mAh·g−1 after 200 cycles [24]. Carbon nanotubes (CNTs) can be
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • (CNTs) are considered to be a very interesting material, especially after being rediscovered by Sumio Iijima in 1991 when he found multiwalled CNTs in carbon soot prepared by arc discharge [1]. During the past years, CNTs have proved to possess extraordinary electrical, mechanical, physical and chemical
  • tailoring the selectivity of CNTs towards target gases, one of the simplest consists of decorating the outer wall of CNTs with metal or metal oxide nanoparticles [6][7][8][9]. In some cases, metal or metal oxide nanoparticles show interesting catalytic properties for the decomposition of target molecules
  • into more reactive species that, in turn, interact with CNTs. In addition, such nanoparticles shift the Fermi level of CNTs, adsorb target molecules, and help in mediating the charge transfer between adsorbates and CNTs [6][10]. Several metal oxides have been reported as useful for decorating CNTs and
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • TC enhancement, although at high loading [14][15]. Some graphitic fillers have theoretical TC values of up to several thousands of W/(m∙K) [16][17], making them natural candidates for use in TIMs. Within the group of graphitic fillers, it seemed likely that carbon nanotubes (CNTs) would be suitable
  • graphene, a two-dimensional sheet of sp2-hybridized carbons, with a much lower filler-to-filler resistance than that of the CNTs [11][24][25]. In recent years, extensive studies have been conducted on graphite and graphene nanoplatelets (GNPs, composed of several graphene layers, with thickness of up to
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019
Other Beilstein-Institut Open Science Activities