Search results

Search for "DFT calculations" in Full Text gives 159 result(s) in Beilstein Journal of Nanotechnology.

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • examined by means of density functional theory (DFT) calculations. Our results reveal that the properties of 1T′ TMDs are mainly affected by their anions. The disulfides are stiffer and more rigid, diselenides are more brittle. In addition, the 1T′ polytype is softer than 2H TMDs. Comparison with the
  • 1T′ structural polytype are systematically investigated by means of first-principles density functional theory (DFT) calculations. Our results demonstrate that the anisotropic mechanical properties of 1T′ TMD materials are greatly affected by their anions. They also show different properties in
  • of 520 eV was employed to expand the smooth part of the wave function. Since traditional DFT calculations at the GGA level cannot correctly include the nonlocal van der Waals interactions [39][40][41][42], the DFT‐D3 approach was applied in this study to consider the influence of the van der Waals
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • density functional theory (DFT) calculations, trapping experiments, and electron spin resonance measurements (Figure 10). Thus, the impact of intrinsic OVs within SnO2 NPs and the resulting S-scheme heterojunction on the band structure, charge transfer, and photocatalytic activity was presented. The
PDF
Album
Review
Published 21 Jan 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • ://webbook.nist.gov/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), or can be determined via DFT calculations [11][12][29]. MBN Explorer and MBN Studio enable the creation of various crystalline substrates for which the unit cell and translation vectors are specified. The software tools enable also creating
  • Pt(PF3)4 molecule is determined via DFT calculations and then optimized using MBN Explorer. The rCHARMM parameters for a Pt(PF3)4 molecule are determined from a series of DFT-based potential energy scans, similar to how it was done in [29] for a W(CO)6 precursor molecule. In brief, the DFT
  • calculations are performed using the Gaussian 09 software [30] employing the B3LYP exchange–correlation functional and a mixed LanL2DZ/6-31+G(d,p) basis set, wherein the former set describes the Pt atom and the latter is applied to P and F atoms. The geometry of the molecule is optimized first (states with
PDF
Album
Full Research Paper
Published 13 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • (DFT). Our DFT calculations reveal that π-SnSe features an optical bandgap of 1.41 eV and has an exceptionally large lattice constant (12.2 Å, P213). We report several thermodynamic, optical, and thermoelectric properties of this π-SnSe phase for the first time. Our finding shows that the π-SnSe alloy
  • energy bandgap (EBG) of 1.078 eV was calculated by the PBE GGA, which is in good agreement (EBG = 1.18 eV) with other DFT calculations [47], as it is a well-known fact that PBE-GGA underestimates the electronic bandgap values [59]. To calculate the bandgap value more accurately, we have also used the
  • pressure. For an applied pressure, a sharp increase can be seen in the thermal coefficient around room temperature. For temperature values higher than room temperature, α converges towards an approximately constant value. For our DFT calculations applied to the π-SnSe alloy, α is 6.51 × 10−5 K−1 at zero
PDF
Album
Full Research Paper
Published 05 Oct 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • activity than double F substitution, and the polymer with the methoxy group at the meta site and the F atom at the para site yields the highest HER due to the excellent mobility of photogenerated charge carriers and the broad light absorption range. DFT calculations also verified that incorporating F on
  • with pyrene and BT exhibited the best HER (177.50 μmol·h−1, 20 mg) due to low charge recombination and strong photoinduced charge transfer. Furthermore, DFT calculations (Figure 7) indicated that incorporating halogen atoms in both P43 and P44 (Figure 5) reduces the energy barrier for forming H
PDF
Album
Review
Published 30 Jun 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • work functions of the reconstructed and the cubic configuration of KBr were measured and indicate, in accordance with the DFT calculations, a difference of nearly 900 meV. The difference is due to the strong interaction and local charge displacement of the K+/Br− ions and the Ir(111) surface, which are
  • temperature and density functional theory (DFT) calculations. The results suggest that this particular reconstruction of KBr occurs on Ir(111), due to a specific correlation of the lattice parameter. When deposited on a single layer of graphene on the same substrate, the topography of the KBr islands returns
  • answer, density functional theory (DFT) calculations have been performed to conclude on the observed structure. As a fundamental consideration, the lattice match for the orientation of KBr to fit the direction of Ir(111) due to was used and several possible periodicities have been considered as
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • supramolecular structures. It is noteworthy that individual W3O9 clusters, according to previous density functional theory (DFT) calculations [11], are characterized by the most stable six-membered ring structure with D3h symmetry. It consists of oxygen-bridged tungsten atoms with two additional terminal oxygen
  • with a constant distance between them. The DFT calculations of a very similar oxide phase, grown by a reactive Ti deposition on Pt(111) [25], showed that the brightest spots belong to fourfold oxygen-coordinated titanium atoms, whereas threefold coordinated Ti atoms are depicted with less contrast. The
  • atoms remain in the oxidation state +VI and one is reduced to +IV (compare Figure 3c and Figure 3d). The latter one has less unoccupied electronic states and, therefore, is not resolved by scanning with a positive bias voltage. Our DFT calculations of W3O9 and of a hypothetical W3O8 molecule in the gas
PDF
Album
Full Research Paper
Published 16 Feb 2021

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • comparison between BOSS and AFM will be reported in [53]. We highlight the computational efficiency of global structure search with BOSS by comparing the number of required DFT calculations to a conventional structure search. The best candidates for the minimum-energy structures can be first estimated using
  • at each of the adsorption sites. We estimate that the relaxation of the structures requires on average 40 calculation steps per structure. With this method, the estimated computational cost would be 1600 DFT calculations. Still, this amounts to exploring only a small portion of the PES and does not
  • guarantee a reliable identification of the global minimum energy structure. With BOSS, we identified the stable structures of camphor on Cu(111) with 892 DFT calculations (689 to construct the surrogate model of the 6D PES, and 203 to relax the eight structures). Relaxation of the predicted stable
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • between functionalized porphyrins has also been observed on metal surfaces [27]. Discussion To gain insight into the reasons behind the experimental findings, DFT calculations were performed. Both, 1 and 2 were structurally relaxed on the 1BL CoO film in order to find the adsorption geometry. The lowest
  • view, respectively, of the relaxed structure of 1 on 1BL CoO according to our DFT calculations. (c) Calculated total energy difference of 1 as a function of the molecular orientation on CoO ultrathin films. Significant rotational barriers of 0.9 eV exist on the 1BL film, while on the 2BL film the
PDF
Album
Full Research Paper
Published 05 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • overlap between the phenyl rings. This will cause an increase in the energy spread of the π bands, resulting in a decrease in the ionization potential and an increase in the electron affinity. Gas phase DFT calculations show that the EA of planar 6P (1.74 eV) is indeed 0.3 eV higher than the EA of twisted
  • ]. It should be noted that the occupation of the LUMO is predicted to reduce the torsional angle in the molecule, given that it has a bonding character with respect to the phenyl rings (see Figure 3c) [33]. However, this is not a sufficient condition for planarization. Density functional theory (DFT
  • ) calculations for the isolated molecule indicate that the torsional angle changes from 35 to only 20° upon the formation of the anion. Presumably, the electrostatic interaction of the charged molecules with the substrate completes the planarization. In summary these results suggest that MgO films prepared under
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • characterizing a family of pyridin-4-ylethynyl-functionalized pyrene derivatives in different environments. UV–vis measurements in toluene solutions revealed absorption at wavelengths consistent with density functional theory (DFT) calculations, while emission experiments showed a high fluorescence quantum yield
  • effect of the substitution on the electronic properties of the pyrene core, DFT calculations were performed (B3LYP/6-31G** level of theory, in vacuum). The frontier Kohn-Sham orbitals of pyrene and the di- and tetrasubstituted (pyridin-4-ylethynyl)pyrenes 1, 2, and 3 are shown in Figure 1b (see also
  • trans-like and tetrasubstituted pyrenyl derivatives (Figure 8a and Figure 8b). The cis-substituted pyrene 3 showed a lower solubility in solvents such as toluene, and therefore the optical properties could not be measured, although (TD)DFT calculations indicated a similarity to the trans-like isomer
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • ), Cu(110), and Cu3N/Cu(110) surfaces [20] as well as on the insulator surfaces calcite(104) [21] and CaF2(111) [22]. An eclipsed ferrocene conformation was found to be predominant on the metallic surfaces [20] and on calcite(104) [21]. On CaF2(111) surfaces, density functional theory (DFT) calculations
PDF
Album
Full Research Paper
Published 22 Sep 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • ] and quantum information technology [44][45]. Currently, the most promising research seems to be the properties of the superconducting state in Li-intercalated hexagonal boron nitride bilayer (Li-hBN) compounds. Based on DFT calculations, it has been shown that the critical temperature (TC) of the
  • resistance), the crossover to superconductivity (50% of the normal resistance), and the confinement of vortices, respectively. The important question is whether the Li-hBN bilayer system yield the high critical temperature that was suggested from DFT calculations (TC = 25 K) [41]. We think that this not the
  • is quantified by the so-called Eliashberg function (α2F(ω)). The form of the Eliashberg function for a specific physical system can be determined theoretically through DFT calculations [58], or experimentally using the data provided by tunnel experiments [59][60]. The electron correlations (the
PDF
Album
Full Research Paper
Published 07 Aug 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • chemical signal. In addition, it has been shown that the 2JPP coupling constant values decrease when the electron-withdrawing power of the substituents decreases [55]. The density functional theory (DFT) calculations on free and Au-complexed P=N–P=S linkages have shown that a charge is transferred from the
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • , we corroborate this assignment by simulating constant-height dI/dV maps of a free, flat-lying molecule. We first calculated the gas-phase electronic structure using density functional theory (DFT) calculations with the B3PW91 functional and the 6-31g(d,p) basis set as implemented in the Gaussian 09
  • LUMO with the double U-shape being in very good agreement with the calculations of the tunneling matrix element. The very same signatures in the conductance map at 0.64 V suggest that this resonance stems from the LUMO as well. The DFT calculations show that the LUMO is non-degenerate. Hence, we can
  • essentially shows the same elliptical shapes of the molecules as the STM image recorded in the electronic gap (Figure 4a). Our DFT calculations suggest that the next higher unoccupied orbitals lie 3 eV above the LUMO and show a pattern of nodal planes that are absent in the experiment. Additionally, given the
PDF
Album
Full Research Paper
Published 20 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • Abstract Recent experiments suggest graphene-based materials as candidates in future electronic and optoelectronic devices. In this paper, we propose to investigate new photodetectors based on graphene nanomeshes (GNMs). Density functional theory (DFT) calculations are performed to gain insight into
  • makes it suitable for optical devices. Keywords: absorption spectra; DFT calculations; graphene nanomesh; graphene nanoribbon; photodetectors; Introduction Graphene monolayers with honeycomb crystal structure have unique electrical and optical properties and have received a lot of attention recently
  • ]. In this paper, for the first time, we study a new GNM-based photodetector using computational modeling. In order to do a complete device simulation, we initially perform ab initio DFT calculations to investigate the electronic and optical properties of the several materials used in devices channels
PDF
Album
Full Research Paper
Published 15 Jul 2020

Three-dimensional solvation structure of ethanol on carbonate minerals

  • Hagen Söngen,
  • Ygor Morais Jaques,
  • Peter Spijker,
  • Christoph Marutschke,
  • Stefanie Klassen,
  • Ilka Hermes,
  • Ralf Bechstein,
  • Lidija Zivanovic,
  • John Tracey,
  • Adam S. Foster and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2020, 11, 891–898, doi:10.3762/bjnano.11.74

Graphical Abstract
  • isolated ethanol molecule on calcite obtained with DFT calculations [13]. Consequently, the hydrocarbon chains of the ethanol molecules point away from the surface. This results in one ethanol molecule per CaCO3 at the calcite (10.4) surface. The ordered first layer of ethanol molecules above the calcite
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • [6], CuPc [7][8][9][10], ZnPc [11], FePc [12] and H2Pc [13]), while their nonplanar counterparts such as SnPc have been rarely probed [14]. Spectroscopy studies or density functional theory (DFT) calculations of molecular species adsorbed onto titanium dioxide can be an arduous task, especially for
  • assume that the shape asymmetry of SnPc may also appear as a result of the presence of the surrounding molecules, or it can arise from the corrugated nature of the rutile (110) surface including its defects. To confirm the identification of Sn-up and Sn-down geometries, we performed DFT calculations. A
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • at 685 nm and 767 nm showed two resonant excitation wavelengths of 494 nm and 528 nm. DFT calculations suggest that the wide range of PL emission from UV to NIR is attributed to different types of defect structures. However, the single-photon emission from UV and NIR peaks has not been demonstrated
PDF
Album
Review
Published 08 May 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • characterized with NMR (1H, 13C) and electro-spray ionisation mass spectroscopy (ESIMS) the results of which can be found in Supporting Information File 1 (Figures S1–S4). Several methods were used to investigate the properties of the ligands in the absence of the perovskite as reference. DFT calculations were
  • Information File 1, Figure S18. DOI for dissolved functionalized 3D particles and free ligands in MeOD. 1H NMR spectra can be seen in the Supporting Information File 1, Figure S21. Supporting Information NMR, ESIMS, UV–vis (kinetic) and PESA measurements, and DFT calculations of the free ligands; UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • the symmetric Ti2O3 model based on DFT calculations [24]. These two structural models have been widely accepted. Mochizuki et al. reported total reflection high-energy positron diffraction results for the (1 × 2) surface, which supported the asymmetric Ti2O3 model [25]. In contrast, our previous study
PDF
Album
Full Research Paper
Published 10 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • calculation, we performed an empirical WKB fitting with parameters obtained from the DFT calculations to predict the pressure-dependent conductance of pure BP devices at larger scales. Using the WKB method, the conductance GWKB can be estimated empirically by [46][47][48][49][50] where A and B are two
PDF
Album
Full Research Paper
Published 24 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theory (DFT) calculations. Importantly, gas sorption measurements demonstrate that sorption capacity is maintained after encapsulation of fullerenes, whereas the electrical conductivity is
  • intermolecular contribution to the NCI surfaces was calculated by means of the INTERMOLECULAR keyword, and the VMD-1.9.3 software [65] was employed for graphical display. Molecular DFT calculations were performed for the C60@TTFTB system using the Gaussian-16.A03 suite of packages [66]. Hydrogen atoms were added
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • with the CASTEP code [37] employing the PBE functional [38] and on-the-fly generated ultrasoft pseudopotentials (energy cutoff: 570 eV). Two different correction methods were included in all DFT calculations in order to account for dispersion interactions. The total energy values of these are shown in
  • cluster DFT calculations, as described previously [44]. ESP values for the symmetry unique atoms of MFU-4 and SF6 are displayed in the Supporting Information File 1 in Figure S13. Prior to the potential energy scan, all atomic positions of the MFU-4 unit cell were fully relaxed at tight convergence
  • group P4mm (no. 99) for those cells corresponding to “min”, “TS”, and “centre”; cubic space group Pm−3m for the “start/end” configuration). Again, the experimental lattice parameter a = 21.697 Å was retained during all calculations. The two different correction methods were included in all DFT
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019
Other Beilstein-Institut Open Science Activities