Search results

Search for "brain" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • elevated accumulation of Zn [1][3]. Long-term, high-dose Zn supplementation disrupts copper intake, induces brain cell death, contributes to prostate cancer, and also functions as a gliotoxin and a neurotoxin [3][4]. Conversely, the most common micronutrient deficiency of crop plants is Zn deficiency
PDF
Album
Full Research Paper
Published 23 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • vitro and in vivo models. Finally, the author discusses the possibility that the nanoformulation could be used to treat cases of schistosomiasis in the brain due to its smaller size [40]. Nevertheless, it is noteworthy that oral administration of biodegradable nanoparticles, such as conventional
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • barriers besides cellular membranes need to be addressed. A few examples of these barriers are penetration in or permeation through mucus, skin penetration, overcoming the blood brain barrier, or extravasation from blood vessels. Another challenge is the accumulation of particulate drug delivery systems in
PDF
Album
Perspective
Published 23 Nov 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • stability and solubility [9]. The complexation occurs mainly through hydrophobic interactions in protein cavities [10][11]. In a recent study, zein nanoparticles loaded with CUR have been studied for their potential in treating brain tumors, and the results have demonstrated a reduction in the proliferation
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

A bifunctional superconducting cell as flux qubit and neuron

  • Dmitrii S. Pashin,
  • Pavel V. Pikunov,
  • Marina V. Bastrakova,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2023, 14, 1116–1126, doi:10.3762/bjnano.14.92

Graphical Abstract
  • , bifunctional cells, which can act as adiabatic neurons or flux qubits depending on the operating conditions, have the potential to be used to simulate the operations in a non-classical brain [54][55]. The idea behind the creation of the bifunctional cell. The combination of a quantum interferometer (quantron
PDF
Album
Full Research Paper
Published 21 Nov 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • smaller when proteins were bound to NPs [81]. Xiao et al. functionalized Tf onto the surface of PEGylated polystyrene NPs to evaluate the effect of the protein corona on blood–brain barrier transcytosis, endocytosis, and intracellular trafficking. They demonstrated that Tf-NPs completely lost their
PDF
Album
Review
Published 04 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • might present or mild, nonspecific, or no symptoms. This phase is followed by a chronic stage where parasites can be primarily found inside specific tissues. Decades after infection, signs and symptoms of damage to target organs, mainly the heart, gastrointestinal tract, and brain appear in 20–30% of
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • conventional treatments. This resistance is mostly due to the blood–brain barrier, which is the most important obstacle to drug distribution. Since nanoparticles can penetrate through the blood–brain barrier, they are a preferred medicine in brain and nervous system diseases. In glioblastoma multiforme
  • sample was recorded at 762 nm. During the measurements, distilled water was used as a reference. Cell culture Human brain glioma (U-118 MG) and human retinal pigment epithelium (ARPE-19) cell lines were purchased from ATCC (NY, USA) and cultured in 10% (v/v) FBS (Gibco; Thermo Scientific, USA) and 1% (v
  • and their viability, as it greatly simplifies the procedure for measuring proliferation over MTT, reduces assay time, and increases the sensitivity of the assay [73]. In this study, the dose-dependent cell viabilities of human brain glioblastoma (U-118 MG) and human retinal pigment epithelium (ARPE-19
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • showed that the PLGA nanoparticles functionalized with 8D3 antibody were able to cross the blood–brain barrier (BBB) as demonstrated by the analgesic effect of encapsulated loperamide on mice. PLGA nanoparticles prepared using Polysorbate 80 with the same formulation discussed above (diameter ca. 27 nm
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • (CNS), where endothelial cells form the tightest and the most selective blood–brain barrier (BBB) that provides protection against the penetration of harmful substances and pathogens. Other types of connections include adherens junctions, maintained primarily by transmembrane VE-cadherin, and gap
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • cells have also been found to have the ability to penetrate the blood‒brain barrier (BBB) in some special cases [26][27]. As a highly specialized structure, the BBB maintains homeostasis of the central nervous system [48]. The targeted delivery of drugs to the brain is challenging because of the limited
  • BBB permeability, which restricts the treatment of brain-related diseases [49]. Aggressive metastases to brain tumors are common in various types of tumors, such as melanoma, lung cancer, and breast cancer [27]. These tumor cells are able to cross the BBB and adhere to brain tissue. This process is
  • B16F10 cells, breast cancer 4T1 cells, and African green monkey kidney fibroblast COS-7 cells were used to compare the penetration in brain tissue. The NPs coated with B16F10 and 4T1 cell membranes showed excellent fluorescence aggregation signals 8 h after the nanoformulations were administered
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • translated to drug delivery systems for lung and brain targeting [119][120][121][122]. Biomimetic cell membrane protein-decorated NPs successfully mitigate immune system recognition, increase blood circulation time, improve nonspecific tumor targeting, and increase tumor homing potential. NPs with red blood
PDF
Album
Review
Published 22 Feb 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • development in superconducting spintronics, based on functional nanostructures and Josephson junctions, has taken place [13][14]. The implementation of such devices in building blocks for quantum computers and for novel computers using non-von Neumann architecture with brain-like artificial neural networks
PDF
Editorial
Published 10 Jan 2023

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • influence of external stimuli and intracellular processes [1][2]. Disruption of the natural regulation process and increasing concentration of H2O2 in the blood can cause severe diseases such as Alzheimer's and Parkinson's [3], premature aging of cells [4], death of nerve cells [3][5][6], loss of brain mass
PDF
Album
Full Research Paper
Published 03 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • small size of nanomaterials enables them to permeate through biological barriers in the body, such as the blood–brain barrier, the pulmonary system, and through the tight junction of endothelial cells of the skin. The main goal of loading drugs on nanomaterials is the delivery to specific target cells
  • might be used in orthopedics as drug-releasing implants and as an alternative delivery system of chemotherapeutic agents to brain tumors [105]. In this context, Jarosz et al. found that the hydrophilic nature of nanoporous TiO2 influences the loading and release profile of drug molecules [106]. Moreover
PDF
Album
Review
Published 14 Feb 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • particle sizes of 800 ng/mL-70 nm, 280 ng/mL-200 nm, and 550 ng/mL-200 nm, respectively). In the brain, the maximum CUR concentration was detected 5 min after administration (20 ng/mL with a particle size of 20 nm). This suggests that targeted delivery via an optimized size can lead to an increased organ
  • concentration, making it another important benefit of this nanoscale-based approach. However, it is also possible that the bioactive compound may be instead accumulated in other organs at the same time, not just in the brain. This less specific pharmacokinetic profile could be a disadvantage, since targeting
  • , such as the liver (approx. 40 µg/g, 0.5 h), spleen (approx. 30 µg/g, 2 h), kidneys (approx. 19 µg/g, 4 h), heart (approx. 5 µg/g, 4 h), and brain (approx. 5 µg/g, 0.5 h). This shows that CUR nanocrystals administered by the pulmonary route could be a strategy to increase its concentration and
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • an additional mask which must be aligned to the front side pattern – a process requiring through-wafer alignment using infrared light. Other recent fabrication techniques include fixing a glass cover on silicon (GCoS) to manufacture microneedles for deep brain drug infusion. In this technique a glass
  • by GCoS. (a) Overview, (b) microneedle outlet and shank, (c) inlet with microchannels, (d) outlet with microchannels, (e,f) cross-section of microchannels with two and five cavities. (g) A coronal brain cross-section micrograph with the infusion of a dye at the posterior nucleus, (h) a horizontal
  • cross-section of brain displaying cells (Hoechst staining), astrocytes (GFAP staining), and neurons (cresyl violet staining) at the insertion location of the microneedle [66]. Figure 3a–h were reprinted from [66], Sensors and Actuators B, Chemical, vol. 209, by Lee, H. J.; Son, Y.; Kim, D.; Kim, Y. K
PDF
Album
Review
Published 13 Sep 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • analogy of neural networks to the physiological ones was furthered in the 1962 work of Hubel and Wiesel, which showed that a set of neurons arranged in a column extending inwards from the brain surface all respond to stimuli of a specific orientation and location [27]. For instance, a particular column
  • widely applicable for different image segmentation tasks encompassing both 2D and 3D image types. The authors demonstrated segmentation of membranes, mitochondria, and nuclei for images of a mouse brain slice using different microscopic techniques such as CT X-ray microscopy, electron tomography
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • [54][55], and brain [56][57][58][59] tumors. Physics of ultrasound Ultrasound is a noninvasive and nonionizing acoustic wave with a frequency above 20 kHz, which is based on the human perception of sound. The range of US frequency used in medical applications varies from 1 to 15 MHz, in which 1 MHz
  • irradiation increases the efficacy of drug delivery or imaging contrast in cardiovascular diseases [189], cancer [190][191][192][193], infectious diseases [194][195][196][197], brain disorders [198][199], vaccines, and immunotherapy [200]. Escoffre et al. designed liposomal DOX-loaded MBs (DOX-liposomal-MBs
PDF
Album
Review
Published 11 Aug 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • drug abuse [21]. Animal experiments demonstrated Ag accumulation in the liver, kidneys, brain, and testis after oral exposure to AgNPs; however, the chemical form of Ag remained undefined in these cases [22]. In media of high ionic strength and low pH the AgNPs aggregate and/or dissolve [23]. Under
  • plasma (BP), or in 1% (w/v) liver, brain, and kidney homogenates. In most tissue homogenates, AgNPs were well dispersed as shown in Figure 3. Although some aggregates were also visible under these conditions, there were no large crystals in kidney, liver, or brain homogenates as observed in vivo (Figure
  • TEM data revealed quite interesting results. Incubation of AgNO3 in the liver and brain homogenates led to the formation of small AgNPs as presented in Figure 4d and Figure 4e, which was confirmed by energy-dispersive X-ray spectroscopy (EDX) (Figure 4f and Figure 4g). Transformation of different
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • between the groups [83][128]. Human exposure to silver occurs mainly through three different routes, viz. dermal, oral, and through inhalation. After exposure, AgNPs can potentially get accumulated within secondary organs, including the liver, spleen, and brain. Although a large amount of data is
PDF
Album
Supp Info
Review
Published 14 May 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • potential to advance conventional intracranial electroencephalography (iEEG) by utilising brain-compatible soft nanomaterials. The resultant technique has significantly high spatial and temporal resolution, both of which enhance the localisation of brain functions and the mapping of dynamic language
  • processing. This review presents findings on aphasia, an impairment in language and communication, and discusses how different brain imaging techniques, including positron emission tomography, magnetic resonance imaging, and iEEG, have advanced our understanding of the neural networks underlying language and
  • reading processing. We then outline the strengths and weaknesses of iEEG in studying human cognition and the development of intracranial recordings that use brain-compatible flexible electrodes. We close by discussing the potential advantages and challenges of future investigations adopting nanomaterial
PDF
Album
Review
Published 08 Apr 2021

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • , Czech Republic National Aviation University, Liubomyra Huzara ave. 1, Kyiv, 03058, Ukraine 10.3762/bjnano.11.122 Abstract Glutamate is the main excitatory neurotransmitter in the central nervous system and excessive extracellular glutamate concentration is a characteristic feature of stroke, brain
  • identified. Glutamate-coated γ-Fe2O3 nanoparticles can be used for glutamate delivery to the nervous system or for glutamate adsorption (but with lower effectiveness) in stroke, brain trauma, epilepsy, and cancer treatment following by its subsequent removal using a magnetic field. γ-Fe2O3 nanoparticles with
  • transient glutamate biocoating can be useful for multifunctional theranostics. Keywords: blood plasma; brain nerve terminals; glutamate biocoating; maghemite (γ-Fe2O3) nanoparticles; protein biocorona; Introduction Glutamate is a main fast excitatory neurotransmitter in the central nervous system. Normal
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • many species including humans. There are reports of natural magnetite and ferritin formation in the brain and in tumors [50]. When degraded in the body (but only up to certain concentrations/doses), SPIONs are turned into nontoxic iron ions, and are stored in the liver [38]. If the concentration is too
  • kept for storage similar to the Fe collected from dead red blood cells. This can only happen up to the maximum capacity of the spleen [67]. Studying the diffusion of SPIONs in the brain for MRI, Wang and collaborators [128] showed that dextran-coated SPIONs (20 nm) have a good dispersion in the
  • interstitial space of the rat brain, with a retention maximum at 6 h after injection and a clearance of two weeks. When using gold-coated SPIONs they noticed that all nanoparticles remained close to the injection site and were internalized after 24 h and resistant to clearance. Kasten and et al. [30] found
PDF
Album
Review
Published 27 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the blood–brain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels
  • , which at the same time acts as a bottleneck for drug delivery by preventing the vast majority of drugs to reach the brain. To overcome this obstacle, drugs can be loaded inside nanoparticles that can carry the drug through the BBB. However, not all particles are able to cross the BBB and a multitude of
  • nanoparticles (AuNPs); blood–brain barrier (BBB); drug delivery; liposomes; nanomedicine; polymeric nanoparticles; solid lipid nanoparticles; superparamagnetic iron oxide nanoparticles (SPIONs); Introduction Neurological disorders and brain diseases are real burdens for modern societies and healthcare systems
PDF
Album
Review
Published 04 Jun 2020
Other Beilstein-Institut Open Science Activities