Search results

Search for "confinement" in Full Text gives 235 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • sensing materials [95][96][97]. Due to the confinement effect from the porous space, chiral MOFs with suitable recognition sites may improve the stereoselectivity of chiral sensing [98]. Zhu et al. designed a homochiral MOF sensor based on [Zn(L)(2,2′-bipy)]·H2O, which could achieve the quantitative
PDF
Album
Review
Published 27 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • equations (FRE) [18] as Equations 1–4 shows, where n0 is the cavity index, gc is the gain cross section, c is the speed of light. ΓP is the optical confinement factor per stage, α is the laser total loss. NP the total number of stages, 1/τk,i is the rate of electron scattered from subband k to subband i, 1
PDF
Album
Full Research Paper
Published 23 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • steric effects. Confined environments offer geometrical confinement and local flow with shear forces, which were particularly effective for generating laminar stacking structures. The packed coordination polymers showed unique mechanical properties and performed excellent in batteries and pollutant
PDF
Album
Review
Published 12 Aug 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • perfect light confinement and giant field enhancement [25][26][27][28][29]. Hence, quasi-BICs can be utilized to design narrow-band absorbers with high Q-factor. Tunable absorption is interesting regarding many potential applications. There are generally two ways to achieve tunable absorption. One is to
PDF
Album
Full Research Paper
Published 19 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • promoted strong light confinement, and the increased number of adsorption sites due to the branched ZnO nanostructures. Despite the fact that ZnO is a non-plasmonic semiconductor material, it can elicit a degree of SERS effect via chemical enhancement of atomic vibrational modes of the analyte. Kim et al
PDF
Album
Review
Published 27 May 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • /or deprotonated/protonated sulfonate groups (–SO3−/–SO3H) within the crystals. Spatial confinement may hinder proton hopping to some extent, which is why activation energies larger than in bulk liquid water are frequently observed in such materials (up to 0.4 eV) [25]. In contrast, when proton
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • , whereas exposure to and subsequent absorption of NIR light by iron oxide nanoparticles promotes NIR-induced hyperthermia [10]. Although magnetic hyperthermia has been widely used in biomedical research, it is subject to several limitations such as the need for sophisticated equipment, cellular confinement
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • impact of electron–phonon coupling on both strong correlations and interference. We perform a discussion for quantum dots arranged in single (TQD) or double (DTQD) T-shaped geometries (see below Figure 1). Due to the quantum confinement, there may be also a confined phonon located in a single QD or
PDF
Album
Full Research Paper
Published 12 Nov 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • cantilever) of an AFM probe accumulate to influence the CPD measured by KPFM. In AM-KPFM implementations especially, the CPD values are receptive to non-local capacitive couplings that degrade the tip-confinement sensitivity over heterogeneous samples [25][36][47]. Conversely, FM-based KPFM methods operate
PDF
Album
Full Research Paper
Published 06 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • filtering [21], and quantum confinement effects [22]). Many of these methods focus on reducing the lattice thermal conductivity and try to preserve a high power factor (PF). On the other hand, a high figure of merit can be obtained in pristine TE materials that have intrinsically minimal thermal
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • saturated colors with a narrow bandwidth of EL (full width at half maximum ≈30 nm) have made the QLED attractive [90][91]. In effect, owing to the quantum confinement of CdSe QD, a decrease in particle size blueshifts the emission. Thus, their emission can be tuned to the entire visible spectrum by varying
PDF
Album
Review
Published 24 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • . Sulfur–porous carbon composites Hollow and porous carbon structures may not only increase cathode conductivity, but can also allow for physical confinement of long-chain sodium polysulfides and reduce the structural damage caused by sulfur volume expansion [4][11]. This makes sulfur–porous carbon
  • composites remarkably promising cathode materials for RT Na–S batteries. Among the different studied materials are, for instance, microporous (Figure 3) and ultramicroporous carbon materials, which have shown a considerable ability to confine sulfur and sodium polysulfides [29][30]. This confinement
  • . Moreover, the carbon structure in the cathode has mesopores and, therefore, can confine a certain amount of sulfur and polysulfides. In addition to the confinement, the generated polysulfides can also be anchored by the partially oxidated sulfur–carbon units (R-SO) and form insoluble surface-bound
PDF
Album
Review
Published 09 Sep 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • water, with only a weak band at approx. 3400 cm−1 present in the OH stretching vibration region. Additional factors, such as confinement effects or the presence of some solutes, are common in the research of the SERS effect of water [33][34]. In our previous work, we compared, for the first time
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • , which is expected due to the quantum confinement effect [13]. Another crucially important optical characterization technique for the investigation of defects is Raman spectroscopy. The phonon vibration modes are highly sensitive to the existence of point defects, which are reflected in distinct spectral
  • . Nanometer-sized ZnO shows a significant increase in bandgap due to quantum confinement effects [7][8][9]. (d) Structural changes of ZnO during the size reduction from bulk to the nanoscale can be tracked via Raman spectroscopy. Nanoscale ZnO exhibits significant blueshift, broadening, and softening of the
PDF
Album
Review
Published 13 Jan 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • effects of interaction play a more fundamental role. Carbon nanotubes are quasi one-dimensional systems, and the role of correlations further increases in quantum dots due to additional confinement. Of importance is also the low dielectric constant, which is especially low in suspended nanotubes [36]. A
  • magnetic fields do not close the bandgap due to a finite confinement energy. Figure 8b shows the field dependencies of four states from the lowest electron shell and four states from the highest hole shell of the quantum dot CNTQD(33,30). No crossing of the electron line with the hole line is observed for
PDF
Album
Full Research Paper
Published 23 Dec 2020

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • semiconductor nanowires (NWs) have been extensively studied in recent years due to the predominant mechanical flexibility caused by a large surface-to-volume ratio and unique electrical and optical properties induced by the 1D quantum confinement effect. Herein, we use a top-down two-step preparation method to
  • the study of the piezotronic effect than nanofilms or bulk materials since the smaller physical size and larger surface-to-volume ratio of 1D NWs yields superior mechanical properties [4][10]. In addition, 1D semiconductor NWs can increase the electron mobility and achieve the confinement of light
  • based on the 1D quantum confinement effect. Hence, the unique electrical and optical properties of 1D semiconductor NWs have attracted research interest from the field of nanogenerators [11][12][13][14] and NW-based strain sensors [15][16][17][18][19]. Strain sensors can convert mechanical deformation
PDF
Album
Full Research Paper
Published 10 Dec 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • resistance), the crossover to superconductivity (50% of the normal resistance), and the confinement of vortices, respectively. The important question is whether the Li-hBN bilayer system yield the high critical temperature that was suggested from DFT calculations (TC = 25 K) [41]. We think that this not the
PDF
Album
Full Research Paper
Published 07 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • microbeaker” to confine the motion of a single nano-object. For the creation of high thermal gradients, their approach requires prefabricated plasmonic structures, which results in a big drawback: the confinement of an object is possible just within the structure, i.e., the object can not be freely
  • would never react due to the low contact probability. However, using thermophoretic tweezers, they could be easily trapped and brought close to each other to increase the reaction probability by confining them to a smaller volume. For such single-molecule chemistry reactions, tight confinement of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • particular, photodetectors based on graphene will have a large dark current due to the conductivity of graphene even without incident photons [2]. An energy gap in the band structure of graphene can be created using quantum confinement effects via creating graphene nanoribbons (GNRs) with a width of
  • integer). This form of classification is based on the relation between the magnitude of the energy gap and the width of the AGNRs. The quantum confinement effect alters the bandgap energy in these nanostructures, which decreases with the increase of AGNR width (within each group). A comparison of the
  • is around 300,000 cm−1, which is larger than that of GNRs. By comparing the absorption spectra of GNRs and GNMs, it can be concluded that when the ribbon width is increased and, thus, the effect of quantum confinement is reduced, the spectra approach the absorption spectrum of graphene. The same
PDF
Album
Full Research Paper
Published 15 Jul 2020

Simulations of the 2D self-assembly of tripod-shaped building blocks

  • Łukasz Baran,
  • Wojciech Rżysko and
  • Edyta Słyk

Beilstein J. Nanotechnol. 2020, 11, 884–890, doi:10.3762/bjnano.11.73

Graphical Abstract
  • a confinement template to initiate chemical reactions. It can be thought of as an extension of heterogenous catalysis where the initial precursors, the intermediate state, and the final supramolecular network all remain in an adsorbed state. Complex self-assembled structures are essential for many
PDF
Album
Full Research Paper
Published 08 Jun 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • administration compared to the intravenous and the intraperitoneal route, without inducing any acute inflammatory reaction in the lungs. The mechanism behind this increased brain confinement are not well understood. However, the authors concluded that pulmonary administration seemed to be a feasible strategy for
PDF
Album
Review
Published 04 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • . This hopping is visible by eye in the camera image and can be seen for a 3 μm bead in the 2-waveguide device in Supporting Information File 4. With increasing Pfib the local traps becomes stronger, resulting in stronger confinement of the Brownian motion of a bead in the local trapping potential. For
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • variation with geometrical confinement in some TMDCs has been studied recently [7]. Monolayer (1L) TMDCs consist of a plane of a transition metal, M, sandwiched by chalcogenides, X, on either side to yield the stoichiometry MX2 [8]. The interlayer bonding in most ML TMDCs is through the weak van der Waals
  • electric filed [18]. Similarly, the Raman linewidths in graphene are found to increase with defects resulting from electron–impurity and electron–phonon scattering [19]. Moreover, the Raman linewidth broadening is also attributed to the confinement of the optical phonons. Specifically, in the case of low
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020
Other Beilstein-Institut Open Science Activities