Search results

Search for "dye-sensitized solar cells" in Full Text gives 52 result(s) in Beilstein Journal of Nanotechnology.

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • promising green industry for the future power demand. Among these technological resources, dye-sensitized solar cells (DSSCs) have shown good performance since their first demonstration by O'Regan and Grätzel in 1991 [2]. Figure 1a shows the standard structure of DSSC: The first part of this structure
  • Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, Catania, Italy 10.3762/bjnano.8.31 Abstract In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar
  • cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed
PDF
Album
Full Research Paper
Published 30 Jan 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • nanocatalysts. Keywords: hybrid polymer composites; maghemite nanoparticles; photocatalysis; TiO2 nanoparticles; UV–visible irradiation; Introduction Over the last years, titania nanomaterials have attracted a lot of attention as they have found numerous applications in the field of dye-sensitized solar cells
PDF
Album
Full Research Paper
Published 27 Jan 2017

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • Division, CSIR-National Chemical Laboratory, Pune 411 008, India 10.3762/bjnano.8.23 Abstract As an alternative photosensitizer in dye-sensitized solar cells, bovine serum albumin (BSA) (a nonhazardous protein) was used in the synthesis of colloidal CdS nanoparticles (NPs). This system has been employed
  • ; ZnO; Introduction Dye-sensitized solar cells (DSSCs) using inorganic semiconductors are being investigated as a cost-effective and alternative energy source. In DSSCs, a porous electrode made of a wide band gap semiconductor is required for anchoring dye molecules and transporting photo-injected
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • conditions. Keywords: dye-sensitized solar cells; molecular nanostructures; phthalocyanines; porphyrins; rutile surfaces; STM imaging; Introduction There is an increasing interest in optoelectronic applications of organic molecular heterostructures which utilize inorganic substrates, such as titanium
  • oxides. Recently various devices, such as light-emitting diodes [1], organic field effect transistors [2], and dye-sensitized solar cells [3], have been developed and commercialized. It is apparent that in almost all areas of utilization, the electronic properties of complex structures play a crucial
  • device functionality. It was reported that a mixture of porphyrins and phthalocyanine has a profound impact on the photovoltaic parameters of dye-sensitized solar cells [9][10]. Therefore, the microscopic investigation on such systems is crucial. One of the most popular nonmetal substrates used for
PDF
Album
Full Research Paper
Published 11 Jan 2017

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • to display better gas selectivity and sensitivity [1][2]. Additionally, open nanostructures facilitate the penetration of gas, and as a consequence, reduces the response time. Titanium dioxide (TiO2) is effectively used in environmental and energy production applications such as dye-sensitized solar
  • cells, photocatalytic water purification, and hydrogen generation by water splitting [3][4][5]. In sensor technology this n-type semiconductor is frequently considered as a promising material for gas detection applications [6]. It has excellent sensitivity and selectivity for many different gases such
PDF
Album
Full Research Paper
Published 15 Nov 2016

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • . Needless to say, there are many wide-band-gap materials that are studied in the context of photovoltaic applications. However, among them, titanium dioxide seems to be favoured. Indeed, since O’Regan and Grätzel published their seminal paper [2], the interest surrounding dye-sensitized solar cells (DSSC
PDF
Album
Commentary
Published 09 Nov 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • produce UV [9], blue [10] or white light [11]. Recently there have also been reports on dye-sensitized solar cells [12][13] that utilize ZnO nanostructures. ZnO, with its interesting electronic and optical properties [14] and possibility of synthesis using relatively simple approaches, can become a low
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • gap and large exciton binding energy, making it suitable for a wide range of applications such as UV lasers [11], dye-sensitized solar cells [12][13][14], gas sensors [15][16], UV sensors [17], light emitting diodes [18], spintronic devices [19], transparent conductive electrodes [20], lasers [21
PDF
Album
Full Research Paper
Published 10 Apr 2015

Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

  • Serena Gagliardi and
  • Mauro Falconieri

Beilstein J. Nanotechnol. 2015, 6, 886–892, doi:10.3762/bjnano.6.91

Graphical Abstract
  • Serena Gagliardi Mauro Falconieri ENEA, C. R. Casaccia via Anguillarese 301, 00123 Roma, Italy 10.3762/bjnano.6.91 Abstract For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is
  • optical functionality of novel photoanode structures. Keywords: dye-sensitized solar cells; light trapping; optical characterization; photoanode modeling; titania nanostructures; Introduction The exploitation of solar irradiation, in particular by the use of photovoltaic (PV) technologies, is a widely
  • recognized target for renewable energy production. Among the different technologies, dye-sensitized solar cells (DSSC) have attracted particular interest, starting from the publication of the seminal paper of Gratzel and O’Reagan in 1991 [1]. A DSSC is a photoelectrochemical system, similar to others studied
PDF
Album
Full Research Paper
Published 02 Apr 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • membranes. Consequently, low-temperature fabrication routes are essential to maximize the benefits of the unique material architecture. The crystallinity of the ZnO nanorods must also be controlled for their application in photocatalysis and in dye-sensitized solar cells. Further, single crystals are
PDF
Album
Full Research Paper
Published 12 Mar 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • exploited in several types of devices, such as distributed feedback lasers [11][12][13][14][15], sensors [16][17], absorption enhancement for photovoltaics [18] or in dye-sensitized solar cells [19][20][21]. Furthermore, nanoparticle-based photonic crystals have been employed for switching applications [22
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • to the optical transitions in amorphous TiO2 leading to enhanced optical absorption and, thus, generation of electron–hole pairs for photocatalysis (Figure 6a,b) [50]. Furthermore, plasmonic dye-sensitized solar cells based on Au@TiO2 nanostructures show remarkably enhanced power conversion
  • -light irradiation [50]. b) Volume of hydrogen generated (VH2) under visible-light irradiation from a tungsten halogen lamp using Janus and core-shell Au50nm@TiO2 nanostructures, as well as amorphous TiO2 and bare gold particles [50]. c) Schematic illustration of plasmonic dye-sensitized solar cells
PDF
Album
Review
Published 05 Dec 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • semiconducting matrices, such as SnO2 [10], ZnO [11] and CdS [12] for the embedding of noble metal nanoparticles has shown great potential. Thin films and nanostructures of TiO2 are probably one of the most investigated systems for different applications, such as memristors, dye-sensitized solar cells
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
  • , University of New South Wales, Kensington NSW 2052, Australia 10.3762/bjnano.5.102 Abstract Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) using TiO2 nanotube (TNT) arrays as photoanodes were investigated. The TNT arrays were 3.3, 11.5, and 20.6 μm long with the pore diameters of 50
  • ) revealed that the amount of dye and TNT lengths were critical factors influencing the performance of DSSCs, which is consistent with the experimental results. Keywords: charge generation; dye-sensitized solar cells; generalized transfer matrix method; optical process; photocatalysis; TiO2 nanotubes
  • ; Introduction Owing to its chemical durability, non-toxicity, and abundance, TiO2 has attracted great attention as a good photoelectrode material in dye-sensitized solar cells (DSSCs) [1][2]. In particular, the light harvesting capacity and dye loading, which are the important parameters affecting the amount of
PDF
Album
Full Research Paper
Published 24 Jun 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • as photosensitizers for transition metal oxides. Note that various organic dyes such as rhodamine B, porphyrins, and phthalocyanines have been employed as photosensitizers [11][12][13][14] and these dyes also play an important role in the photosensitization of dye-sensitized solar cells (DSSCs) [15
PDF
Album
Review
Published 23 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • including UV lasers [1], field effect transistors [2], dye sensitized solar cells [3][4], surface enhanced Raman spectroscopy (SERS) [5] and biomedical applications [6][7][8][9][10]. ZnO nanostructures are promising photocatalysts because of their high quantum efficiency, high redox potential, superior
PDF
Album
Full Research Paper
Published 15 May 2014

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • dye-sensitized solar cells to the oxidative degradation of pollutants [7][8][9][10][11]. Despite being cheap, chemically robust, and generally non-toxic, TiO2 has a wide band gap of more than 3.0 eV, which means that photocatalytic processes that use TiO2 as the sensitizer can only absorb UV radiation
PDF
Album
Supp Info
Letter
Published 24 Apr 2014

Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Neha Bhardwaj,
  • Jaspal Singh,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2013, 4, 763–770, doi:10.3762/bjnano.4.87

Graphical Abstract
  • environmental pollutants. ZnO nanostructures with different morphologies have been synthesized by wet chemical methods [9][10][11][12][13] and used for various applications such as photocatalytic degradation of organic dyes [14][15][16][17][18][19][20][21][22][23][24], dye sensitized solar cells [25][26][27][28
  • synthesized by Umar et al. [31] for an efficient photocatalysis and the fabrication of efficient dye sensitized solar cells. Shi et al. [33] fabricated flower-like ZnO on ZnO nanorods without use of any surfactant. Self-supported ZnO photocatalysts in the form of plates were prepared by Yassitepe et al. [24
PDF
Album
Full Research Paper
Published 18 Nov 2013

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • solar energy conversion systems like dye sensitized solar cells [11][12] and water splitting devices [13] or lithium ion batteries [14]. Here, in particular the excellent conformability of ALD growth over high surface area materials and its uniformity and self-termination [15] were beneficially applied
PDF
Album
Full Research Paper
Published 08 Nov 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • University, Ramat-Aviv 69978, Israel Department of Chemistry, University of Basel, Spitalstrasse 51 CH4056, Switzerland 10.3762/bjnano.4.49 Abstract Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide
  • built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far. Keywords: atomic force microscopy (AFM); dye-sensitized solar cells (DSC); Kelvin probe force microscopy (KPFM
  • ); surface photovoltage (SPV); titanium dioxide (TiO2); Introduction Dye-sensitized solar cells (DSCs) provide a promising low-cost, high-efficiency third-generation photovoltaic concept based on the spectral sensitization of a nanoporous wide bandgap semiconductor [1][2]. In the past two decades DSCs have
PDF
Album
Full Research Paper
Published 01 Jul 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to
  • ]. Nanotechnology holds great promises for the development of new devices in the field of advanced energy conversion. This became very apparent with the development of the dye-sensitized solar cells by M. Grätzel [2] more than 20 years ago. Other than conventional semiconductor photovoltaic cells, which depend on a
PDF
Album
Full Research Paper
Published 14 May 2013

Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles

  • Gilad Gotesman,
  • Rahamim Guliamov and
  • Ron Naaman

Beilstein J. Nanotechnol. 2012, 3, 629–636, doi:10.3762/bjnano.3.72

Graphical Abstract
  • -layer electrostatic assembly (LBL) or Langmuir–Blodgett (LB) techniques, showed that the NPs funnel the absorbed energy from larger bandgap NPs to smaller ones [16][17][18][19][20][21]. Buhbut et al. even used NPs as nano-antennas in dye-sensitized solar cells. The NPs transfer the absorbed light
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2012

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSCs). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron
  • also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO2 conduction band and the electron recombination determined the open-circuit voltage of the DSC. Keywords: dye-sensitized solar cells; electrochemical impedance spectroscopy; electron recombination; TiO2 [001] facet
  • ; ultrathin nanosheets; Introduction In the past two decades, dye-sensitized solar cells (DSCs) have received substantial attention from both academic and industrial communities as one of the most promising low-cost, high-efficiency third-generation photovoltaic devices [1][2]. A typical DSC consists of a
PDF
Album
Full Research Paper
Published 07 May 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • titanium dioxide serves to accept photoinduced electrons from sensitizers that cannot be strictly considered as SAMs, i.e., most types of dye-sensitized solar cells (DSSCs). Review Self-assembled monolayers chemisorbed on TiO2 Both TiO2 and SiO2 are oxides capable of forming surface hydroxyls, and
  • studied quite thoroughly for both organothiolated SAMs on metals and organosilanes on silicon. The appearance of dye-sensitized solar cells [85], based on (disordered) dye molecules attached to the surface of nanoparticulate titanium dioxide, provoked interest also in the charge transport from SAMs to
  • . A claim was made that similar paths yielding long-lived charge separation situations may be relevant also in natural photosynthetic systems, and should be considered in the development of dye-sensitized solar cells. In certain cases, feasibility studies with TiO2-containing systems were later
PDF
Album
Review
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities