Search results

Search for "electrolysis" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2016, 7, 22–31, doi:10.3762/bjnano.7.3

Graphical Abstract
  • Technologies, Energy and Sustainable Economic Development (ENEA), Technical Unit for Materials Technologies - Brindisi Research Center, Mesagne (BR), Italy CNR-IFN Bari, Bari, Italy 10.3762/bjnano.7.3 Abstract A one-step electrochemical method based on sacrificial anode electrolysis (SAE) was used to deposit
  • of an in situ electrodecoration procedure based on the so called sacrificial anode electrolysis (SAE) [42][43]. Subsequently, ZnO and Au@ZnO nanocomposites, annealed at two different temperatures, 300 and 550 °C, were morphologically and chemically characterized by means transmission and scanning
  • the electrolytic cell and stirred to yield a homogeneous ZnO suspension. The electrolysis was performed in potentiostatic mode, fixing the potential of the working electrode at 1 V, and stopped after the total charge reached 300 C [48]. Subsequently, the Au@ZnO nanocomposite was centrifuged at 6000
PDF
Album
Full Research Paper
Published 08 Jan 2016

Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

  • Beti Andonovic,
  • Abdulakim Ademi,
  • Anita Grozdanov,
  • Perica Paunović and
  • Aleksandar T. Dimitrov

Beilstein J. Nanotechnol. 2015, 6, 2113–2122, doi:10.3762/bjnano.6.216

Graphical Abstract
  • thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current
  • layers and their number by XRD data. The enhanced model was applied to graphene samples produced by two electrochemical methods: high temperature electrolysis in molten salt and electrolysis in aqueous solution, both using a nonstationary current regime. The enhancement of the model provides a great
  • presented in this work is the following: graphene samples obtained by electrolysis in molten salts are denominated GMSE1, GMSE3 and GMSE4, and graphene samples produced by electrolysis in aqueous electrolyte are denominated GAE1 and GAE2. Results and Discussion The XRD pattern of each of the samples was
PDF
Album
Full Research Paper
Published 06 Nov 2015

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • glyceraldehyde as the major one. The addition of bismuth as a saturated solution redirects the reaction towards 100% selective formation of dihydroxyacetone [109]. The bulk electrolysis of glycerol in 0.1 M NaOH on Ni/C and NiCo/C anodes gives formate, glycolate and glycerate as major products [110]. The
PDF
Album
Review
Published 29 Aug 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • successfully plating magnesium metal from the electrolysis of Grignard reagents. These included Grignard, aminomagnesium chlorides and organoborate reagents in ethereal solvents. They screened electrolytes based on the possibility of reversibly electrodepositing/stripping magnesium metal and intercalating
  • work confirmed that ionic salts could be made compatible with the magnesium metal if the anion in the salt has sufficient reductive stability (note that this was also the first time to show Mg plating possibility in a BH4−-containing system, as an old report on Mg plating using electrolysis (on Cu
  • cathode and Al anode) of a MgBr2, LiBH4 mixture in diethylether/tetrahydrofuran showed lots of boron impurities, likely generated from the electrolysis side reaction. No information supporting Mg(BH4)2 formation were given [38]). Mohtadi et al. [27] also developed a magnesium borohydride–lithium
PDF
Album
Review
Published 18 Aug 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • 1993, Berge added a dielectric layer between the liquid and solid [67] and greatly reduced the electrolysis that hindered the development of the applications of electrowetting. The electrowetting on dielectrics (EWOD) opened a new age for the study of electrowetting, the EWOD has been studied
PDF
Album
Review
Published 15 Jul 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • the semiconductors [8]. The band gap of semiconductor photocatalysts must be larger than the potential of water electrolysis to meet the energetic requirement for overall water splitting (1.23 eV, corresponding to an absorption threshold of 1000 nm). In particular, the bottom level of the conduction
PDF
Album
Review
Published 09 Jul 2014

Atomic layer deposition, a unique method for the preparation of energy conversion devices

  • Julien Bachmann

Beilstein J. Nanotechnol. 2014, 5, 245–248, doi:10.3762/bjnano.5.26

Graphical Abstract
  • Julien Bachmann Institute of Inorganic Chemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany 10.3762/bjnano.5.26 Keywords: atomic layer deposition; batteries; energy conversion; electrochemistry; electrolysis; fuel cells; photovoltaics; solar
PDF
Album
Editorial
Published 05 Mar 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • water electrolysis [36]. Although Ni and NiO have already been used as co-catalysts for hydrogen evolution over oxide semiconductor photocatalysts, the application of NiS as co-catalyst for photocatalytic hydrogen evolution is less studied [37][38]. Only until recently, Xu et al. reported that NiS can
PDF
Album
Full Research Paper
Published 23 Dec 2013

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

  • Wenyu Zhang,
  • Yi Zeng,
  • Chen Xu,
  • Ni Xiao,
  • Yiben Gao,
  • Lain-Jong Li,
  • Xiaodong Chen,
  • Huey Hoon Hng and
  • Qingyu Yan

Beilstein J. Nanotechnol. 2012, 3, 513–523, doi:10.3762/bjnano.3.59

Graphical Abstract
  • also be applicable for the preparation of other lithium-metal-oxide/graphene hybrids for high-power LIB applications. Results and Discussion The samples from the electrochemical deposition were prepared by the electrolysis of MnSO4 using graphite sheets as the working electrodes. In this process, metal
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2012

Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits

  • Jonathan Berson,
  • Assaf Zeira,
  • Rivka Maoz and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2012, 3, 134–143, doi:10.3762/bjnano.3.14

Graphical Abstract
  • current responsible for the metal transfer, the total measured current is expected to include also contributions from competing Faradaic processes, such as the electrolysis of water, as well as from direct electronic current through closely spaced metal grains in the thin silver film. The experimental
PDF
Album
Supp Info
Letter
Published 16 Feb 2012

Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method

  • Michal Eshed,
  • Swati Pol,
  • Aharon Gedanken and
  • Mahalingam Balasubramanian

Beilstein J. Nanotechnol. 2011, 2, 198–203, doi:10.3762/bjnano.2.23

Graphical Abstract
  • electrolysis under Ar gas in molten salt has also been used for fabricating 50 nm metallic zirconium nanoparticles [8]. Implants are frequently made of zirconium as well as from titanium [9]. In the powder form, zirconium is highly flammable, and consequently has military applications [10], such as in the
PDF
Album
Full Research Paper
Published 06 Apr 2011
Other Beilstein-Institut Open Science Activities