Search results

Search for "filling" in Full Text gives 191 result(s) in Beilstein Journal of Nanotechnology.

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • conduits has become dysfunctional due to gas filling), the refilling conduit is separated from its still functional water-filled neighbour by an air pocket. This air space is stable due to the interfacial forces created by the shape of the pit chamber. Left: Closely arranged “ice cream cones” on the
PDF
Album
Perspective
Published 17 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • each (Figure 8b, Figure 9a). After punching fifteen times, every circular nanofur film had about 600 holes. Afterwards two films are loosely connected with adhesive tape. This step simplifies filling the pad with a predetermined amount of oil-absorbing material (see Figure 9b). For the nanopads
  • well as the number and diameter of the punched holes. Furthermore, it might be possible to increase absorption speed and amount via the filling or the holes of the nanopads. The filling material itself or its amount might be improved. Many other applications of thin nanofur, such as new kinds of food
  • 100 µm. (b) To simplify filling the pads with oil absorbent material, the two halves are held together by scotch tape. (c) Such a preprocessed pad is placed between two polyimide films to avoid cutting through the material while welding. The upper hollow cylinder is heated and then pressed onto the
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • related work was summarized into two main categories, namely confined crystallization and confined assembly of monocrystalline coordination polymers. When the crystallization of monocrystalline coordination polymers happened inside the networks, the process could be recognized as a filling process of the
PDF
Album
Review
Published 12 Aug 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • adjust settings such as slicing, shell and scaffolding, laser power, and scanning speeds before converting to General Writing Language (GWL) codes. Parameters such as slicing distance of 2 µm, multiple base slide counts of 4 layers, shell and scaffolding filling method, null shear angle (0°), and laser
PDF
Album
Full Research Paper
Published 08 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • image consisting only of the local maxima with a minimum height equal to the subtracted value. The local maxima are then labeled and used as seeds for the watershed algorithm [27]. Each particle is reconstructed filling the distance transform image from the voxel with the largest value down but
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • the bridging ligands, for example, –OH, –COOH, –PO3H2 or –SO3H, (ii) by filling pores or channels with acidic guest molecules, such as oxonium ions, organic or inorganic acids, or ammonium cations, or (iii) by ligand substitution to increase the mobility of proton carriers [13][14][15][16]. Here we
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • . [45], Abdelrahman et al. [46], and Eltaher et al. [47][48] proposed a perforated-beam structure, based on cantilever and bridge structures. Their studies showed that the filling rate of holes significantly affected the resonant frequency of the beam. Guha et al. [49] and Sravani et al. [50] proposed a
PDF
Album
Review
Published 12 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • preclinical efficacy of this system on full thickness osteochondral defects in a porcine model [70][71]. The results indicated that this system facilitated the filling of the defects and subchondral bone tissue repair as well as providing better therapeutic efficacy in full thickness chondral defects through
  • that the PLLA/PDA/CS fibers considerably facilitated the filling of the defect site and the regeneration of hyaline-like cartilage [79]. The implantation of the hBMSCs-laden PCL nanofibrous scaffold in a swine model with 7 mm full thickness cartilage defects showed the most complete repair and
PDF
Album
Review
Published 11 Apr 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • pixel filling. The effect of particle density on the output performance was studied (Figure 10c). It can be seen from the fitting curve that the output performance increases with the increase of the substrate area fraction without nanoparticles, but when the substrate area fraction without nanoparticles
PDF
Album
Full Research Paper
Published 15 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • with gold prior to evaluation in the SEM system. Care was taken to not overexpose the sample during gold preparation, as evidenced by a lack of melted particles or crevice filling in the final micrographs. The SEM PDI is a polydispersity index derived from image generated data. The method by which it
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • filling of the structure, the structural heterogeneity within a volume, the presence of foreign chemical substances and the size variation of the matrix and particles during the chemical analysis process. However, one cannot ignore sensors based on molecularly imprinted polymers for the selective
PDF
Album
Full Research Paper
Published 25 Jan 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • for a system of two diamond solid-state gears with different lubricants (benzene, hexadecene and phenanthrene). We found that lubricants can be used to synchronize the collective rotations in both gears by filling the gap for better angular momentum transfer and this effect is independent of the type
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • structure of the prepared nanowires, unlike simple structures, enables further more extensive engineering of nanowire properties by specific technological steps (e.g., thermal annealing, etching, doping, and filling) in order to obtain, for example, catalytic nanowires with huge specific surface or hollow
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
PDF
Album
Full Research Paper
Published 13 Oct 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • template filling [26][27]. There are several requirements for structure and properties of NEAs, that includes, (1) mechanical stability and the ability to control the geometric parameters of nanoelectrodes, (2) chemical stability in electrolyte solutions, (3) recess uniformity for the electrodes in the
  • metal for the second segment. The low concentration of Au(I) electroactive species in the electrolyte results in a low current density (javer ≈ 0.6 mA·cm−2 for Ed = −1.0 V) and a low metal growth rate of 3.5 µm·h−1. As a consequence, complete pore filling in the used AAO template requires ca. 14 h. Such
  • a short Au segment (0.57 ± 0.06 µm) with the subsequent filling of the rest of the pore by Cu (Figure 1e,f). The use of a bright Cu plating solution with a high concentration of Cu(II) allows one to decrease the electrodeposition time down to 30 min and obtain a continuous metal layer on the AAO top
PDF
Album
Full Research Paper
Published 30 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • , which leads to a high immobilization efficiency. The sodium citrate concentration (2.5 mM) was adjusted to obtain a maximal NP surface filling and, at the same time, to avoid NP aggregation caused by high salt concentration. Figure 2 shows absorption spectra of the polyethylenimine (PEI)-modified glass
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • insensitive to scale). The deep CNN was shown to give better performance in much less computing time than alternative, filling methods. The resulting CNN images gave better fidelity compared with full raster scans made 25 times faster than a standard raster that provided the “ground truth” image, 70 s as
PDF
Album
Review
Published 13 Aug 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • filling As and Ga dangling bonds with adsorbed S atoms, such that covalent bonds (e.g., S–S, As–S, and Ga–S) are observed [26][27][28][29]. As a result, the energy of the surface states is changed such that they no longer work as charge traps [30]. This approach has already proven to be a method that
PDF
Album
Full Research Paper
Published 28 Jun 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • represent the actual reaction temperature values inside the vial or on the substrate (i.e., near the Ag seeds or nanoparticles) during the processing time. Additionally, the filling level of the precursor reaction vial was kept below 3 mL to avoid excessive pressure buildup in the vial which could lead to
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • (NPs). Further increase of the Mn layer thickness to 9 ML results in a closely packed film of agglomerated islands with a relatively uniform size distribution (≃100 nm) completely filling the surface (see Figure 1c). XRD in Bragg–Brentano geometry has been carried out on these islands on the annealed 9
PDF
Album
Full Research Paper
Published 28 Apr 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • in the literature are and generally compared to encapsulation processes (i.e., in situ syntheses of nanomaterials in CNT cavities). The latter suffers from a lack of tube-filling capacity along with unknown interactions between the inner parts of the tube and the hosted materials. Despite these
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • (CO)2Br2 are both very sensitive to O2 and H2O, they were stored in a nitrogen-filled glove box and GIS filling was carried out in the box. The GIS needles were positioned about 150 µm from the electron beam and about 150 µm above the sample surface, which was at the eucentric height (5 mm working
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • the n-type character of the implanted and diffused dopants around the deep trench structure into the lightly doped silicon substrate. Furthermore, with the amplitude of the derivative of the capacitance (Figure 6b), information about the filling of the trench (dielectric and doped polysilicon), and
  • again the signature of the diffused doping is provided. At the same time, the sMIM-C response (Figure 6d) localizes and reveals, with a very high resolution, the filling oxide and the carrier profile around the deep trench. Even the dielectric layer thickness of 40 nm can be determined (Figure 6d) in
  • accessible. Thereby, sMIM can be considered very useful for the failure analysis of several mechanisms, such as interface delineation, local diffusion, or conformity of filling layers. This methodology extends the possibilities to investigate the nanoscale electrical properties and can also solve issues
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • of the system, before recording TH, TC and the thermal power through the sample. The linear fit of ℜ × A as a function of the nanowire length L is also reported in the plot of Figure 2. The reciprocal of the slope is the thermal conductivity kt, multiplied by the coverage factor (or filling factor
  • ) ν, where ν is the ratio between the total cross-section surface of the nanowires and the surface of the sample. From the plot, a value of kt = 4.2 ± 0.4 results for the samples doped at 800 °C. For the estimation of the filling factor, several SEM images have been taken of different locations of
  • each sample. The area of the samples is roughly 1 × 1 cm2, each image covers an surface of at least 50 × 50 μm2. A software for image reduction (ImageJ) has been used to determine the filling factor in each image, and an average has been calculated repeating the procedure for at least ten images. The
PDF
Album
Full Research Paper
Published 11 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • excited electron from the LUMO into unoccupied metallic states and/or a filling of the HOMO by an electron from the metal. We note that the HOMO and LUMO for the chemisorbed molecule differ from those of the gas phase molecule. Thus, the LUMO that is drawn in Figure 1a is not identical to the LUMO in the
  • PTCDA and hBN/Cu(111) is weak and physisorptive [32] as opposed to the chemisorptive bond between PTCDA and Cu(111) [33]. Ultraviolet photoelectron spectroscopy (UPS) experiments showed that on the Cu(111) surface the chemical bonding leads to a filling of the LUMO [33]. In contrast, on hBN/Cu(111), the
  • PTCDA from Cu(111). For PTCDA on Ag(111) and Au(111) [39], it has been shown that FL can only be observed from the second and third molecular layer onward. The excitation of the first layers is completely quenched by the metal substrates as described above. In UPS experiments, a partial filling of the
PDF
Album
Full Research Paper
Published 03 Nov 2020
Other Beilstein-Institut Open Science Activities