Search results

Search for "finite-difference time-domain" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • The plasmonic coupling between gold caps and holes in thin films was investigated experimentally and through finite-difference time-domain (FDTD) calculations. Sparse colloidal lithography combined with a novel thermal treatment was used to control the vertical spacing between caps and hole arrays and
  • Nova 600 NanoLab XHR Magellan scanning electron microscope (SEM) from FEI generally with energies of 1–5 kV and nominal spot size ≈1 nm. Computer simulations of extinction spectra and charge/field plots analysis were carried out using the finite-difference time-domain method (FDTD Solutions, Lumerical
  • -difference time-domain (FDTD) simulations. We show strong coupling of the dipolar and quadrupolar nanocap resonances with the Bloch wave-SPP (BW-SPP) and LSPR type hole array resonances. Experimental Nanostructure design Figure 1a shows a schematic of the design of the plasmonic gold structures fabricated by
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • -surrounding interface the finite-difference time-domain (FDTD) method represents a widely used tool. It allows for flexible modeling and effective problem solutions for isolated and simple particle systems, as well as for large particle populations and with interactions with the environment taken into account
PDF
Album
Review
Published 13 Nov 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • exhibit a much better photocatalytic performance than N-doped TiO2 nanoparticles or TiO2 nanotubes alone. Electromagnetic simulations based on the finite-difference time-domain method provided the theoretical support for this local electric field enhancement mechanism. In contrast to the local electric
PDF
Album
Review
Published 23 May 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • “optical antenna”. Since the fabrication of suitable structures with electron beam or focused ion beam lithography is a tedious and time-consuming task, the experiments are more and more supported by modeling with numerical methods such as Finite Difference Time Domain (FDTD) and Discrete Dipole
PDF
Editorial
Published 19 Feb 2014

Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

  • Nikita Arnold,
  • Boyang Ding,
  • Calin Hrelescu and
  • Thomas A. Klar

Beilstein J. Nanotechnol. 2013, 4, 974–987, doi:10.3762/bjnano.4.110

Graphical Abstract
  • dominates, irrespectively of the power of (a/λ) associated with it. Some of the higher modes may dominate simply because they best match the spectral bandwidth of the gain media. Numerical Here we summarize several subtleties, crucial for reliable simulations. Conventional finite difference time domain
PDF
Album
Full Research Paper
Published 30 Dec 2013

Controlling the near-field excitation of nano-antennas with phase-change materials

  • Tsung Sheng Kao,
  • Yi Guo Chen and
  • Ming Hui Hong

Beilstein J. Nanotechnol. 2013, 4, 632–637, doi:10.3762/bjnano.4.70

Graphical Abstract
  • conducted by the finite-difference-time-domain (FDTD) method (FDTD Solutions 8.5, Lumerical Inc.) with realistic material parameters and Joule loss factors [16][17]. The simulation model was established and is shown in the schematic diagram Figure 1. This near-field energy controllable system consists of
PDF
Album
Full Research Paper
Published 09 Oct 2013

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • several tens of microns on the surface of a gold taper [11]. These results have been confirmed by three-dimensional finite difference time domain (FDTD) simulations [11]. These theoretical investigations and experimental demonstrations suggest that pump–probe studies employing adiabatic nanofocusing are
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

3D nano-structures for laser nano-manipulation

  • Gediminas Seniutinas,
  • Lorenzo Rosa,
  • Gediminas Gervinskas,
  • Etienne Brasselet and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2013, 4, 534–541, doi:10.3762/bjnano.4.62

Graphical Abstract
  • were fitted from the experimental values obtained in literature, by means of a built-in polynomial model. The finite-difference time-domain (FDTD) included a section of the substrate, enclosed in all directions by perfectly matched layers (PML) to avoid spurious reflections. The central area of 5×5
PDF
Album
Full Research Paper
Published 17 Sep 2013

Distinction of nucleobases – a tip-enhanced Raman approach

  • Regina Treffer,
  • Xiumei Lin,
  • Elena Bailo,
  • Tanja Deckert-Gaudig and
  • Volker Deckert

Beilstein J. Nanotechnol. 2011, 2, 628–637, doi:10.3762/bjnano.2.66

Graphical Abstract
  • -dimensional finite-difference time domain (3D-FDTD) simulations [20]. A metal substrate such as gold provides an additional field enhancement as it produces a large electromagnetic (EM) coupling with the tip, which is often called a “gap mode”. In contrast, dielectric materials cannot couple as effectively
PDF
Album
Full Research Paper
Published 23 Sep 2011
Other Beilstein-Institut Open Science Activities