Search results

Search for "graphene oxide" in Full Text gives 144 result(s) in Beilstein Journal of Nanotechnology.

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • graphene oxide networks, (c) carbon nanotubes, and (d) boron nitride networks. Figure 4 was reprinted with permission from [111], Copyright 2021 American Chemical Society. This content is not subject to CC BY 4.0. (a) Schematic illustration of synthesis of SOM-ZIF-8. SOM stands for single-crystal ordered
PDF
Album
Review
Published 12 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected
  • ; graphene oxide; nonenzymatic approach; parathion; pesticides; square-wave voltammetry; Introduction Crop production is constantly increasing to fulfil the demands of the growing population. The protection of crops against insects is a big challenge for our society. Pesticides have indiscriminately been
  • nanoribbons doped with silver nanoparticles, rGO doped with ZrO2, and CuO–TiO2 hybrid nanocomposites were proposed to detect methyl parathion [19][20][21][22]. Rajaji et al. (2019) modified glassy carbon electrodes with graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposites to detect
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • ) [3][4][5][6][7], epitaxial growth on different substrates [8][9], and the chemical reduction of graphene oxide (GO) [10][11]. In 2008, production of graphene by liquid-phase exfoliation (LPE) of graphite through sonication of graphite powder in N-methylpyrrolidone (NMP) was first proposed by Coleman
PDF
Album
Full Research Paper
Published 18 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • investigate thermal properties of different hybrid nanofluids, Singh et al. [35] used theoretical and experimental results of GO–CuO/DW (graphene oxide and copper oxide nanoparticles dispersed in distilled water) and compared those with mononanofluids (i.e., GO/DW and CuO/DW) at different temperatures. The
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • alone [12]. In addition, ENHs have been utilized in energy applications as well. Zhang et al. developed a graphene oxide (GO)-based nanohybrid Nafion nanofiber as a proton-exchange membrane (PEM) for fuel cells to overcome low proton conductivity, high fuel permeability, and poor stability of
PDF
Album
Review
Published 31 Jan 2022

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • layers of graphene oxide and polyethylenimine. The authors showed that a transfer film of graphene on the polymer leads to lower friction. While to our knowledge there have been no numerical studies of friction on graphene-coated polymers, the graphene–polymer interface has been studied. Rissanou et al
PDF
Album
Full Research Paper
Published 14 Jan 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • fractal dimension of 1.79. Tungsten oxide-based fractals A very recent study on the sensing of NO2, acetone, and carbon monoxide was reported by Simon and co-workers. They used Ni nanoparticles to decorate a reduced graphene oxide/WO3 nanocomposite [78]. The WO3 sample annealed at 600 °C shows the
  • hydrothermal method to synthesize reduced graphene oxide and pine dendritic BiVO4 composite with an average length of 1–1.5 μm and about 0.6 μm width [82]. In the hybrid composite rGO nanosheets were draped with a pine dendritic morphology. Figure 20 shows the SEM images of GO (Figure 20a), rGO (Figure 20b
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • concentrations (0.4 wt %) improved the hole-injecting ability of PEDOT:PSS. Incorporation of 0.005 wt % of SWNT in PVK HTL resulted in 55% increment in hole mobility, which was initially 2.5 × 10−6 cm2/V·s [63]. Other carbon-based nanostructures for HTL include graphene oxide. However, an optimum thickness of
  • graphene oxide is required based on the device configuration. Shi et al. obtained similar results with an excellent luminance of 53000 cd/m2, demonstrating its explicit applicability in flexible OLED [64]. Combinations of graphene oxide with polymers and metal oxides have also been evaluated. Lin et al
  • , therefore, reduces the hole injection barrier, which in turn creates a more efficient transfer to the HTL. In the device configuration of Figure 6a, a graphene oxide–Au nanocomposite HIL inserted between ITO and NPB was used to enhance the EL of Alq3-based OLED [51]. The correlation between the wavelength
PDF
Album
Review
Published 24 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • to be highly underinvestigated despite the advantages an aqueous solution-based synthesis route can offer. Instead, commercial S NPs are increasingly employed in cathodes, for instance, by Chen et al. [58], who wrapped reduced graphene oxide sheets around such NPs (Figure 7B). In this case, the
PDF
Album
Review
Published 09 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • signals, the researchers proposed a single-electrode TENG (SE-TENG) as an intelligent neuromorphic sensor using reduced graphene oxide [90]. Reduced graphene oxide can act as electronic trap, and the output information of the sensor contains real-time stimulation information and information about previous
PDF
Album
Review
Published 08 Jul 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • /WO3 composite and CO gas, a response time (Tres) of 7 min and a recovery time (Trec) of 2 min was determined. Keywords: gas sensing; magnetic measurements; nickel nanoparticles; reduced graphene oxide; tungsten oxide; Introduction Toxic gases as well as volatile organic compounds (VOC) are known air
  • , because it has only a few functional groups on its surface, which limits the chemisorption of gas molecules [28]. Graphene oxide (graphite oxide, GO), in contrast, has numerous oxygen functionalities and few remaining π bonds and is therefore electrically insulating [29]. GO can be reduced (reduced
  • graphene oxide, rGO) chemically or thermally. Through the partial removal of oxygen groups, the conductivity can be restored. Additionally, defects and vacancies are created [26]. Because of the ultra-high surface area per atom and the high electron transport along the graphene plane, rGO has a rapid and
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • ), graphene oxide, silver nanoparticles (Ag NPs) [24][25][26], quantum dots, and superparamagnetic particles [27] have been reported to have antibacterial properties against Streptococcus mutans [28] and Xanthomonas perforans, antifungal properties against Fusarium oxysporum [27] and Fusarium graminearum [29
  • zebrafish hatching enzyme 1 (ZHE1), which caused a delay in the hatching of zebrafish embryos by 50% following its exposure to copper oxide (CuO). The group of d’Amora [51] compared the toxicity of oxidized carbon nano-onions, oxidized carbon nano-horns, and graphene oxide on the development of zebrafish
  • . Concentration levels above 50 μg/mL of graphene oxide caused a higher mortality rate, delayed the hatching rate, impaired movements, and delayed embryonic development when compared to oxidized carbon nano-horns. These reports indicate that the exposure to some nanomaterials poses a threat to human health and to
PDF
Album
Review
Published 12 Feb 2021

Toward graphene textiles in wearable eye tracking systems for human–machine interaction

  • Ata Jedari Golparvar and
  • Murat Kaya Yapici

Beilstein J. Nanotechnol. 2021, 12, 180–189, doi:10.3762/bjnano.12.14

Graphical Abstract
  • , cotton, and Kevlar (Figure 1a). The textiles were first dipped into graphene oxide (GO) suspension prepared by the modified Hummer’s method, dried to allow for the layering of GO on the textiles, treated by reducing agents (e.g., hydrazine or hydrogen iodide), and rinsed with distilled water to form a
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • ., metal nanowires, conducting polymers, carbon nanotube (CNT) inks, multiwall carbon nanotube (MWCNT) inks, and reduced graphene oxide) [69][70][71][72][73][74][75][76][77][78][79][80][81][82], can be easily absorbed or used as a coating layer on the surface of the paper due to its wettability and
  • changing the concentration of the conductive precursors (e.g., AgNWs, carbon nanotubes, and reduced graphene oxide). A special nanoscale paper composed of nanocellulose, which is easy to be synthesized/chemically modified/doped, has attracted great attention in recent years. Generally, cellulose-based
  • (e.g., humidity and height sensors) have been rarely reported. Recently, Ejehi et al. proposed a self-powered humidity sensor based on a graphene oxide (GO) paper-based TENG [151], which showed an outstanding power density as high as 1.3 W·m−2, a Voc of up to 870 V and a Isc of 1.4 µA·cm−2. GO was
PDF
Album
Review
Published 01 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • applications that offer high power density, stability, and safety. A specific capacitance of 366 F·g−1 was achieved at 2 mVs-1 [18]. In addition, Li et al. designed an asymmetric pseudosupercapacitor of wavy-Ti3C2Tx/reduced graphene oxide (rGO)/CNT/polyaniline(PANI), in which the Ti3C2Tx MXene is used as
PDF
Album
Review
Published 13 Jan 2021

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • form on its surface. Consequently, both 16 nm and 29 nm NPs have a similar active surface size and the degradation percentage of MP is similar between 16 nm Cu2O (87%) and 29 nm Cu2O (83%). In order to avoid oxidation of Cu2O NPs, reduced graphene oxide (rGO) can be used as a support [54]. Finally, XPS
PDF
Album
Full Research Paper
Published 12 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • et al. produced coated sheets of reduced graphene oxide (rGO) which formed a composite compound containing ZnO [24][25]. One method that facilitates the large-scale production of nanoparticles is the MCP technique. This method is based on a chemical exchange reaction that occurs due to the heat and
PDF
Album
Review
Published 25 Sep 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • -free humidity sensors by using biocompatible collagen nanofibrils [43]. More recently, Zhang et al. developed a TENG-driven self-powered flexible humidity sensor based on a tin disulfide nanoflower/reduced graphene oxide (SnS2/rGO) hybrid nanomaterial [44]. However, the large-scale application of TENGs
PDF
Album
Full Research Paper
Published 11 Sep 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • graphene oxide (RGO)-based sensor and a microfluidic platform fabricated by [25][26][27] can be used with some surface modification for HMIs, but it is mostly capable of detecting in the micromolar range. A polymer-based microcantilever using an encapsulated piezoresistor has been proposed by Kale et al
PDF
Album
Full Research Paper
Published 18 Aug 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • . In 2018, an interesting approach demonstrated that a paper surface functionalized with gold nanoparticles conjugated with graphene oxide showed NIR laser-triggered photothermal ablation of pathogenic bacteria [64]. Upon NIR light exposure, the fabricated paper generated a temperature increase of over
  • nanohole arrays with reduced graphene oxide nanosheets in a unique and flexible polyimide film for laser-gated pathogen inactivation. For the in vivo experiments, the patch was irradiated for 5 min with an LED array (940 nm, 10 W) and the patch surface temperature increased to 52 °C. These tests indicated
  • in 77% planktonic P. aeruginosa cell death. In addition, polyurethane nanocomposites containing the same hybrid nanomaterials were also able to eliminate all the surface-grafted P. aeruginosa cells under NIR light irradiation. Reduced graphene oxide, which is characterized by a broad absorption
PDF
Album
Review
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • PEG and adsorbed on reduced graphene oxide sheets, which enhanced the thermal effect of hyperthermia and reduced the viability of breast cancer cells to less than 25% by reaching 43 °C [152]. Also, Zuvin et al. used 4–5 nm SPIONs conjugated with poly(acrylic acid) and anti-HER2 antibody against breast
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • , due to their excellent physical and chemical properties (e.g., high surface area, excellent thermal and electric conductivity, high mechanical strength)[19][20][21]. Examples of graphene nanomaterials include single-layer graphene, few-layer graphene (FLG), graphene oxide (GO), and the reduced form of
  • for the stabilization of FLG and graphene oxide (GO). During the exfoliation of GO, the band at 700 nm was not observed since the conjugated system of π-electrons is highly compromised by the large amount of oxygen functionalities present in GO. The π–π stacking interactions between Ce6 and GO are
PDF
Album
Full Research Paper
Published 17 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • graphene oxide and graphene without using any solvents or additional surfactants. Results and Discussion Smooth surfaces on commercially available metal particles do not create arcs under microwave irradiation. Instead, they heat up or reflects the microwaves. Thus, activating metal surfaces by acid
  • readily without disturbing internal materials. We could also produce reduced graphene oxide and graphene partially rolled into nanoscrolls. We hope that this work encourages further research exploring the possibilities to synthesize other inorganic nanomaterials by microwave-induced electric discharge
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • ][11][12][13]. The performance of the nickel catalysts could be further enhanced via modifications, such as the usage of carbon supports including N-doped graphene [14], active carbon [15], graphene oxide [16][17], carbon nanotubes [12][18] and covalent triazine frameworks (CTFs) [19][20]. CTFs are
  • activity of Ni/CTF-1-600-22, which means that a fraction of 22 wt % Ni is apparently more suitable than the 33 wt % in Ni/CTF-1-600-33. In the literature, Ni(OH)2/graphene oxide showed a significant enhancement of the ORR activity compared to unsupported Ni(OH)2 and graphene oxide alone. The hybrid
  • material Ni(OH)2/graphene oxide has an onset potential of −0.17 V vs Ag/AgCl for ORR, which is 80 to 100 mV more positive than the corresponding onset potentials of unsupported Ni(OH)2 (−0.25 V vs Ag/AgCl) and exfoliated graphite oxide sheets (−0.27 V vs Ag/AgCl) [64]. In another study, Ni-N/C (nickel
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020
Other Beilstein-Institut Open Science Activities