Search results

Search for "high-speed" in Full Text gives 112 result(s) in Beilstein Journal of Nanotechnology.

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • such as the general acquisition (G-mode) KPFM [35][44][45][46] with sampling rates of the order of megahertz. The high-speed data acquisition brings a substantial increase in the spatial and temporal resolutions of the measurements. Thus, a reported CPD measurement of the G-mode KPFM was on a time
  • high-speed data acquisition board. The PFT scans were performed over 25 μm to encompass large Al and Au regions on each side of the trench, with a PFT modulation of 50 nm amplitude and 0.5 kHz frequency. As can be seen in Figure 2, a characteristic feature of the OL-KPFM measurements is the direct
  • measurements at each location in the scan. The high-speed digitization of the piezo displacement, AFM deflection, and applied bias signals provided detailed observation of the tip–sample mechanical and electrical interactions for topography reconstruction and KPFM characterization. The AFM response to the bias
PDF
Album
Full Research Paper
Published 06 Oct 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • continuous high-speed and blur-free bright-field and two-color fluorescence image acquisition of cells flowing at a rate of 1 m/s [106]. An outstanding CNN for image segmentation is U-Net, developed mainly for biomedical image segmentation [107]. It leads to precise and fast segmentation of images and
  • opposed to 30 min. The μ-scan also took 70 s. The onset of high-speed AFM (HS-AFM) has created additional opportunities but also challenges for researchers that could be aided by machine learning [124][125][126][127]. The challenges in HS-AFM are twofold: 1) How to ensure that sufficient data can be
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • bend during contact formation with the substrate (Figure 6A and Figure 6B). The pad can, therefore, work as a damper at high-speed deformations during jumping or landing. More importantly, in terms of contact mechanics, deformability functions as a basis for replicating a complex substrate profile
PDF
Album
Review
Published 15 Jul 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • load [7]. To detect the state of wheels at high friction and at high speed, sensors based on a harsh-environmental TENG (he-TENG) can be included in a self-powered smart brake system. TENG-based vehicle sensors can collect data on driving habits, such as the frequency of using brake pedal and
PDF
Album
Review
Published 08 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • lithography application based on LabView 8.6 (National Instruments) and a high-speed DAC PCIe card (M2i.6021-exp, Spectrum GmbH, Germany). SEM images were acquired with SmartSEM (Zeiss) and are shown with minor contrast and brightness adjustments only. For Auger electron spectroscopy the electron beam of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • memory (PCM) is an emerging non-volatile memory technology with high endurance, high speed, and good scalability. PCM relies on the change in phase of a nanoscale volume of a chalcogenide material sandwiched between two electrodes. The phase of the material can be switched between the high-resistivity
PDF
Album
Full Research Paper
Published 29 Oct 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • interconnected mesoporous channels in the inner and outer surfaces of OPCGCNFs compared with DCGCNFs/OCGCNFs. The high amount of mesoporous channels was beneficial to the high-speed ion transport and adsorption. The PSD curves were used to analyze, in more detail, the differences in pore structure between
  • higher mesopore volume fraction (Figure 4 and Table 1). The mesoporous structures provided a shorter path and a lower resistance for ion diffusion in porous electrodes by increasing the electrode specific surface area. Therefore, mesoporous structures are more suitable for high-speed ion diffusion under
PDF
Album
Full Research Paper
Published 27 Aug 2020

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • of the junction was ramped up at a constant rate of . The voltage was measured using a low-noise room-temperature differential amplifier AD745 and was fed to a high-speed NI ADC-card. This signal was used to trigger a fast record of the switching current value. This procedure was repeated at least 5
PDF
Album
Full Research Paper
Published 23 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • the quantitative characterization of the 2- and 16-waveguide traps, we study the confined Brownian motion of single trapped beads by recording videos, using a high-speed CMOS camera (AV Mako U029, pixel size 4.8 μm) and by tracking the bead position as a function of the time in these videos. Each
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • setup. The NP product was directly soluble in water and was further purified via high-speed centrifugation (Fisher Scientific) at 14000 rpm for 30 min to remove the excess organics as supernatants from the NP precipitates. The cleaning via centrifugation was conducted two times and the remaining NP
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • tip of a scanning probe microscope. We demonstrate stable resistive switching duty cycles and investigate the dynamical aspects of non-volatile operation in detail. The high-speed switching capabilities are explored by a custom-designed microwave setup that enables time-resolved studies of subsequent
  • set and reset transitions upon biasing the Ag/AgI/PtIr nanojunctions with sub-nanosecond voltage pulses. Our results demonstrate the potential of Ag-based filamentary memristive nanodevices to serve as the hardware elements in high-speed neuromorphic circuits. Keywords: memristor; nanojunction
  • single exception of its photosensitivity. The latter offers a further possibility for a combined electrical and optical manipulation of the resistance states. Instrumental developments for high-speed resistive switching measurements In order to investigate resistive switching in STM based nanojunctions
PDF
Album
Full Research Paper
Published 08 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • the cantilever according to the expression f−3dB = f0/2Q, where f0 is the fundamental resonance frequency. Assuming all other components in the z-axis feedback loop are also working at high speed [3], a low quality factor can demand a fast demodulator [12]. Multifrequency AFM (MF-AFM) is a major field
  • found that conventional high-speed non-synchronous demodulators are incompatible with MF-AFM, due to the lack of robustness against unwanted frequency components [28]. These include the peak-hold [12], peak detector [29] and RMS-to-DC [30] conversion demodulators. In contrast, synchronous demodulators
  • [28][31]. Motivated by improving high-speed MF-AFM demodulation capabilities, a multifrequency Kalman filter was developed [32]. It outperformed a commercially available lock-in amplifier in terms of both tracking bandwidth and noise performance. However, a major disadvantage of the Kalman filter is
PDF
Album
Review
Published 07 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • manufacturing large-scale perovskite solar modules at high speed. Moreover, it is shown that the development of low-dimensional perovskites plays an important role in improving the long-term ambient stability of PSCs. Finally, these latest advancements can enhance the competitiveness of PSCs in photovoltaics
  • general additive to improve the quality of perovskite films and could be used in other scalable fabrication methods to enable the high-speed deposition of perovskite films. The strategy may open up new dimensions of the fabrication of large-area perovskite solar modules at a high speed and thus enhance
PDF
Album
Review
Published 06 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • . Inspired by shark skin, a method of applying a grooved structure to reduce the drag has been proposed [22]. As can be seen in Figure 1b, bird feathers are also covered with grooves. It has been confirmed that the microgrooves are the crucial factor for the low drag and high speed of shark and bird
PDF
Album
Full Research Paper
Published 03 Jan 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • developed a batch fabrication process to integrate silicon nitride tips with an average tip radius of 9 ± 2 nm into high-speed SU8 cantilevers. Key aspects of the process are the mechanical anchoring of a moulded silicon nitride tip and a two-step release process. The fabrication recipe can be adjusted to
  • of reduced quality and can seriously mislead users [4]. New fabrication methods have enabled increased tip sharpness and uniformity, so that commercial AFM cantilevers now have a standard tip quality. A range of specialized AFM techniques require custom tip designs, including high-speed AFM [5][6
  • fabrication yield and an easy bottom-up recipe. Genolet et al. have shown AFM images of DNA-plasmid molecules using SU8 cantilevers [21]. SU8-based Hall effect sensor cantilevers have also been presented by Mouaziz and co-workers [22]. In addition, SU8 cantilevers have shown a performance of high-speed
PDF
Album
Full Research Paper
Published 29 Nov 2019

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • . Ding et al. [10] electrospun nanofibers using a multiple-jet ES system. Krishnamoorthy et al. [11] demonstrated an ES setup consisting of 24 (8 × 3) nozzles for the large-scale production of aligned ceramic nanofibers. Kim et al. [12] developed an upward high-speed cylinder-type ES system with 120
  • for SEM analysis. All FSE experiments were carried out at room temperature (20 °C) and at a relative humidity of 60%. The spinning processes of the different devices were recorded using a high-speed camera at a frame rate of 100 frames/s (VRI-Phantom-VEO-L, Ametek, California, USA), as shown in Figure
  • maximal. The jet initiation in the OSFSE process viewed from the side by a high-speed camera is shown in Figure 4. Immediately after a voltage of 40 kV (which is above the threshold voltage) is applied to the solution surface, a deformation of the fluid is observed at the top edge of the solution
PDF
Album
Full Research Paper
Published 15 Nov 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • melting point of the highest melting lipid, then the active agent is dissolved in the lipid melt and the melt containing the active agent is dispersed in a hot aqueous stabilizer solution (surfactant, polymer) of identical temperature by high-speed stirring to form a coarse emulsion. This pre-emulsion is
PDF
Album
Review
Published 04 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • a dark room for 30 min to achieve the adsorption–desorption equilibrium. Subsequent to irradiation, samples of the solution were taken every 10 min. After high-speed centrifugation, the concentration of MB was analyzed by a UV–vis spectrometer (UV-3200S, MAPADA, Shanghai, China) and calculated using
PDF
Album
Full Research Paper
Published 01 Nov 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • °). Subsequently, the motion of the droplet was recorded by a high-speed camera with 3 frames per second (see Figure 3G and S5.6, Supporting Information File 1). The obtained image series reveals that the droplet crosses the substrate and rolls out of the detection range of the high-speed camera in about 1.3 s
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Preservation of rutin nanosuspensions without the use of preservatives

  • Pascal L. Stahr and
  • Cornelia M. Keck

Beilstein J. Nanotechnol. 2019, 10, 1902–1913, doi:10.3762/bjnano.10.185

Graphical Abstract
  • , bulk suspensions containing 5% (w/w) rutin and 1% (w/w) surfactant were prepared. The pre-dispersions were homogenized with a high-speed stirrer (D-27, Miccra GmbH, Germany) at 24,000 rpm for 5 min in continuous mode and were subsequently subjected to HPH (20 cycles at 1500 bar). During homogenization
PDF
Album
Full Research Paper
Published 19 Sep 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • emulsified using a high-speed homogenizer (Ultra-Turrax®, S25NK-10G, IKA, Staufen, Germany) at 21,000 rpm for 30 min. The resulting pre-emulsion was poured into 6 mL of PVA solution (2%, w/w) and stirred overnight at room temperature to remove the organic phase. Finally, the NPs were purified by three steps
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • properly functionalized [1][2], the small sample volumes they require for operation when combined with microfluidics [3], their high-speed response and label-free operation [4]. Piezoelectric resonators based on thin films of, e.g., AlN or ZnO offer significantly greater sensitivities than conventional
PDF
Album
Full Research Paper
Published 29 Apr 2019
Other Beilstein-Institut Open Science Activities