Search results

Search for "hydrazine" in Full Text gives 47 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • ], chemically converted graphene [49], or reduced graphene [50]. For the chemical reduction of GO, hydrazine monohydrate and dimethylhydrazine have been used extensively as they do not react with water and have the attractive option for reducing GO in an aqueous dispersion [51][52][53]. Though hydrazine
  • effectively removes the oxygen functional group from GO, it also introduces heteroatom impurities such as N2 which form amines, hydrazones or other similar functional groups covalently attached on the sheet of graphene [54]. NaBH4 has been demonstrated as being more effective than hydrazine as a reducing
PDF
Album
Review
Published 24 Mar 2017

Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA)

  • Paula Ciaurriz,
  • Fátima Fernández,
  • Edurne Tellechea,
  • Jose F. Moran and
  • Aaron C. Asensio

Beilstein J. Nanotechnol. 2017, 8, 244–253, doi:10.3762/bjnano.8.27

Graphical Abstract
  • (Ab) and HRP were oxidized with periodate and incubated with the linker hydrazine dithiol. Briefly, 100 μL of Ab 1 mg/mL was incubated with 30 μL of 100 mM phosphate pH 7.4 and 10 μL of periodate 100 mM protected from light for 30 min. In the case of peroxidase, 200 μL of HRP 3 mg/mL were incubated
  • with 20 μL of periodate 100 mM protected from light for 20 min. After these incubation times, 500 μL of PBS were added respectively to quench the reaction. Thereafter, 1.97 μL of 23.5 mM linker hydrazine dithiol were added and mixed for 2 h at room temperature protected from light. The proteins were
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies

  • Giovanna Testa,
  • Laura Fontana,
  • Iole Venditti and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1822–1828, doi:10.3762/bjnano.7.175

Graphical Abstract
  • , such as an organic thiol, is present in solution, it gives rise to a passivation layer that hinders the coalescence and precipitation, allowing the colloidal suspension to remain stable [22]. Among reducing agents, hydrazine and sodium borohydride are the most commonly used but also natural-origin
PDF
Album
Full Research Paper
Published 24 Nov 2016

Effect of tetramethylammonium hydroxide/isopropyl alcohol wet etching on geometry and surface roughness of silicon nanowires fabricated by AFM lithography

  • Siti Noorhaniah Yusoh and
  • Khatijah Aisha Yaacob

Beilstein J. Nanotechnol. 2016, 7, 1461–1470, doi:10.3762/bjnano.7.138

Graphical Abstract
  • -pyrocatechol (EDP) [14][15] and hydrazine/water [14] etchants can be used to remove a single crystal silicon layer. However, certain etchants, such as EDP and hydrazine/water, are not preferable because of their toxicity, instability and difficulty of handling. Sodium hydroxide is rarely used, unlike the
PDF
Album
Full Research Paper
Published 17 Oct 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • bond. The main advantage is that processing is relatively easy. However, the grafting density is low due to slow diffusion. Also, this approach can be applied for polymers with reactive functional groups [2]. The SWNTs can be functionalized by reacting them with organic hydrazine in an aqueous
PDF
Album
Full Research Paper
Published 12 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • sequence: sonication of oMWCNT with Fe(acac)3 in ethanol, solvent evaporation, partial reduction of Fe(acac)3 to Fe3O4 with hydrazine by ultrasonication for 10 min and irradiation by microwave at 100 °C for 20 min. PM-b-PEG/SPIO@oMWCNT#Liu hybrids were obtained by non-covalent decoration with the
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • first reported by Notley et al. [4]. This method was chosen for a number of reasons; firstly, it does not require the use of hazardous chemicals such as sodium nitrate, sulfuric acid, potassium permanganate and hydrazine hydrate, which are used in the oxidation of graphite to graphite oxide and the
PDF
Album
Full Research Paper
Published 08 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • considered due to the simplicity of these systems and the reduced exposure time [123]. A cheaper and easy way to reduce GO is by chemical reduction, which is usually done at room temperature or with low heating [109]. Among the many chemical reagents that could reduce GO, hydrazine and its derivatives are
  • to obtain a C/O ratio of 8.6 and a conductivity of about 16.6 S/cm. Unfortunately, these values are still low when compared to the rGO obtained from the hydrazine derivative compounds. Other reducing agents such as ascorbic acid (C6H8O6) and hydroiodic (HI) acid have been recently proposed because of
  • their potential to obtain higher quality rGO as compared with the product obtained from hydrazine derivative compounds. Fernández-Merino et al. [128] were able to obtain rGO with a C/O ratio of 12.5 and a conductivity of 77 S/cm with ascorbic acid while Moon et al. [130] obtained rGO with a C/O ratio of
PDF
Album
Review
Published 01 Feb 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • accidents [116]. In recent years, researchers tried to get rid of toxic and flammable reagents, such as hydrazine, sodium borohydride, carbon monoxide, and dimethyl formamide (DMF) in the synthesis of NPs [90]. Green synthesis of NPs Metal NPs can be produced and stabilized by various physical and chemical
PDF
Album
Review
Published 10 Dec 2015

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • with sodium sulfide at 180 °C yielded 200 nm α-MnS octahedral NCs but γ-MnS rods (d = 200–300 nm, l = 1.0–1.5 μm) were obtained when a large excess of hydrazine was added [15]. In summary, the control of the crystal structure of MnS NCs was achieved by varying the solvent, the amount of sulfur, or
  • adding a reducing agent such as hydrazine. The effect of surfactant type on the crystal phase of MnS NCs has not yet been studied, to the best of our knowledge. In this paper, we report on the control of the composition and crystal structure of MnS NCs obtained by solvothermal decomposition of sulfur
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • at the walls was repaired. This is in agreement with the results about recovering of the sidewall upon hydrazine treatment or heating treatment for SWCNTs where the partial recovery of the bi-dimensional graphene lattice was demonstrated by the strong decrease in the intensity of the D-band [38][53
  • upon hydrazine treatment. Hence, on one hand, the heating promoted desorption of fluorine-grafted species, while on the other, it induced the self-healing of the carbon lattice recovery. Despite the drastic changes observed as consequence of fluorination and heating treatment, the G-band and the sp2
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Self-assembly mechanism of Ni nanowires prepared with an external magnetic field

  • Xiaoyu Li,
  • Hu Wang,
  • Kenan Xie,
  • Qin Long,
  • Xuefei Lai and
  • Li Liao

Beilstein J. Nanotechnol. 2015, 6, 2123–2128, doi:10.3762/bjnano.6.217

Graphical Abstract
  • cobalt nanowires using a gamma irradiation technique under an external magnetic field. Li et al. [15] synthesized nickel chains under a weak magnetic field by hydrazine reduction in ethylene glycol. Smooth Ni nanowires were prepared by Hu et al. [16] under a stronger magnetic field. Soumare et al. [17
  • ] synthesized nickel nanowires with a diameter of 250 nm and a length of several microns via a chemical reduction method with an external magnetic field of 1.4 T. Liu et al. [18] prepared Ni nanowires with a diameter of 50 nm via a hydrazine reduction route under external magnetic field assistance. However, it
  • of NaBH4 was induced into nucleation and formed insoluble crystals in the reaction solution. The overall nickel reduction by hydrazine in aqueous solution can be described as follows: where Ni(II) represents all Ni(II) species in the solution such as Ni2+, nickel–citrate complexes, Ni(OH)2, [Ni(N2H4
PDF
Album
Full Research Paper
Published 09 Nov 2015

Preparation of Ni/Cu composite nanowires

  • Hu Wang,
  • Xiaoyu Li,
  • Ming Li,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2015, 6, 1268–1271, doi:10.3762/bjnano.6.130

Graphical Abstract
  • ) and 0.18 g C6H5Na3O7·2H2O (0.01 mol·L−1) were dissolved in 60 mL deionized water. The pH value of the solution was adjusted to 12.5 and the temperature of the solution was kept at 80 °C. Hydrazine hydrate (N2H4·H2O) was added as reducing agent. The molar ratio of N2H4·H2O/NiSO4·6H2O was 2:1. Secondly
PDF
Album
Full Research Paper
Published 05 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • wet chemical syntheses by co-reduction of gold and silver salts with citrate [18][19], NaBH4 [20] or starch and glucose [21], reduction with hydrazine in water-in-oil emulsions [22], sol–gel processes [23] or UV irradiation [24]. Recently, the generation of alloyed silver–gold nanoparticles by laser
PDF
Album
Full Research Paper
Published 27 May 2015

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • spectroscopy, SEM/EDX, XRD, XPS, TGA and TEM. In addition, the authors reported that the fluorination of the F-CNOs was reversible upon treatment with hydrazine, which interestingly led also to a regeneration of the “broken” graphene layers of the CNO. Some years later, based on the F-CNO material, the same
PDF
Album
Review
Published 04 Nov 2014

The impact of the confinement of reactants on the metal distribution in bimetallic nanoparticles synthesized in reverse micelles

  • Concha Tojo,
  • Elena González and
  • Nuria Vila-Romeu

Beilstein J. Nanotechnol. 2014, 5, 1966–1979, doi:10.3762/bjnano.5.206

Graphical Abstract
  • channel between them. When one of the two metal salts ([AuCl4]−or [PtCl6]2− for the preparation of Au/Pt particles) and the reducing agent (e.g., hydrazine) are located in the same micelle, the chemical reduction takes place inside the reverse micelle to obtain metal atoms (Au or Pt). That is, the
  • , = 112, = 16. The reducing agent concentration was always double that of the average concentration of the metal precursors ( = 128 molecules of hydrazine per micelle). For convenience, Table 1 provides a summary of the acronyms and abbreviations used throughout this article. Time unit base The time
PDF
Album
Full Research Paper
Published 04 Nov 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • improve electrode kinetics. Hydrazine, for example, was mixed with formic acid and methanol for that purpose [26]. In early works on liquid fuel cells several attempts to use hydrocarbons such as diesel and jet fuel were made. However, electrooxidation of hydrocarbons in low- and intermediate-temperature
  • significant amount of hydrogen such as ammonia, hydrazine, alkali metal borohydrides MBH4 (M = Na, K) are also used as fuels. Theoretically, boron-nitrogen heterocycles proposed for hydrogen storage [33][34] can be used for this purpose. In most cases the electrooxidation of fuels in fuel cells results in the
  • formation of thermodynamically very stable and kinetically inert products. For instance, the electrooxidation of primary alcohols and formic acid generates CO2, and the oxidation of hydrazine releases N2. Such products cannot be directly converted back to starting fuels in a reverse reaction, and their
PDF
Album
Review
Published 29 Aug 2014

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

  • Weiying Zhang,
  • Yuexiang Li,
  • Shaoqin Peng and
  • Xiang Cai

Beilstein J. Nanotechnol. 2014, 5, 801–811, doi:10.3762/bjnano.5.92

Graphical Abstract
  • efficient electron relay between the photoexcited EY and the loaded Pt co-catalyst, which shows an AQY of 4.15% under visible light irradiation. In these works, RGO was obtained by a chemical reduction of GO with hydrazine or sodium borohydride as a reductant. Graphene, an atom-thick two-dimensional (2D
PDF
Album
Full Research Paper
Published 06 Jun 2014

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach

  • Vincent Tiing Tiong,
  • John Bell and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2014, 5, 438–446, doi:10.3762/bjnano.5.51

Graphical Abstract
  • the bright future for CZTS based PVs. The highest efficiency CZTS solar cell was made using hydrazine based sol–gel method. However, hydrazine is a highly toxic, dangerously unstable solvent and requires extra caution in handling and storage [9]. Therefore, a safer, simple yet convenient method for
PDF
Album
Full Research Paper
Published 09 Apr 2014

One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer

  • Arkadius Maciollek and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 380–385, doi:10.3762/bjnano.5.44

Graphical Abstract
  • environmental and biological risky reducing agents and solvents such as sodium borohydride, hydrazine or dimethylformamide. Consequently, the interest in a green nanoparticle synthesis using natural reducing agents like saccharides or cyclodextrin (CD) in environmentally benign solvents increased [9][10][11][12
PDF
Album
Full Research Paper
Published 31 Mar 2014

Dimer/tetramer motifs determine amphiphilic hydrazine fibril structures on graphite

  • Loji K. Thomas,
  • Nadine Diek,
  • Uwe Beginn and
  • Michael Reichling

Beilstein J. Nanotechnol. 2012, 3, 658–666, doi:10.3762/bjnano.3.75

Graphical Abstract
  • alkyl chains. The nanoscale morphology is a consequence of the basic molecular geometry, where it follows that a closure to form a fibril is not always likely for the doubly substituted hydrazine. Therefore, we also observe crystallite formation. Keywords: fibrils; graphite; hydrazide; hydrazine
  • “discs” leading to column formation [7][12]. We investigate the self-assembled fibril structures of two custom-designed amphiphilic gelator molecules: N,N′-bis[3,4-bis(decyloxy)benzoyl]hydrazine (2CHd-10) and [4-(decyloxy)benzoyl]hydrazine (1CHn-10) on the graphite (0001) surface (Figure 1 and
  • of graphite [16]. The structures produced, may, however, generally depend on a complex interplay of many weak interactions. The molecules are prototypes for symmetric and asymmetric hydrazine species, where 2CHd-10 represents two 2CHn-10 molecules linked together such that the amide functionality is
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2012

Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores

  • Thomas D. Lazzara,
  • K. H. Aaron Lau,
  • Wolfgang Knoll,
  • Andreas Janshoff and
  • Claudia Steinem

Beilstein J. Nanotechnol. 2012, 3, 475–484, doi:10.3762/bjnano.3.54

Graphical Abstract
  • -disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation (G4) [37]. Each dendrimer had 96 peripheral charged groups, which were either all cationic or all anionic in nature (G4(+) = G4(NH+Et2Cl−)96, Mw = 32.3 kDa; G4(−) = G4(CHCOO−Na+)96, Mw = 36 kDa). The mass of these molecules is
PDF
Album
Supp Info
Video
Full Research Paper
Published 28 Jun 2012
Other Beilstein-Institut Open Science Activities