Search results

Search for "hydrogen storage" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • used to synthesize boron nitride nanotubes (BNNT)s [3][4]. BNNTs, structural analogoues of carbon nanotube (CNT)s, have superior properties than CNTs due to their robust structure which resists high temperatures and harsh chemical conditions. They also have a high hydrogen storage capacity due to the
  • ionic nature of the B–N bond [5]. In contrast to CNTs, the BNNTs have a constant and wide band-gap of 5.5 eV. Therefore, they are electrical isolators independent from their size or chirality. In recent studies, it has been indicated that the hydrogen storage capacity of BNNTs is two times greater than
  • , hydrogen storage, and the improvement of the mechanical as well as the chemical durability of polymer composites. Experimental Material and methods Colemanite (Ca2B6O11·5H2O) was a gift from Eti Mine Works General Management (Turkey). Iron (III) oxide, iron (II, III) oxide, aluminum oxide, zinc oxide
PDF
Album
Full Research Paper
Published 04 Dec 2013

Controlled synthesis and tunable properties of ultrathin silica nanotubes through spontaneous polycondensation on polyamine fibrils

  • Jian-Jun Yuan,
  • Pei-Xin Zhu,
  • Daisuke Noda and
  • Ren-Hua Jin

Beilstein J. Nanotechnol. 2013, 4, 793–804, doi:10.3762/bjnano.4.90

Graphical Abstract
  • important for various applications, such as hydrogen storage [1], healthcare [2] and environmental technology [3]. It is well known that tubular silica structures can be fabricated by using inorganic [4], organic [5] or biological templates [6]. Among them, the utilization of self-assembled organic
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2013

Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage

  • Ben Breitung,
  • M. Anji Reddy,
  • Venkata Sai Kiran Chakravadhanula,
  • Michael Engel,
  • Christian Kübel,
  • Annie K. Powell,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 705–713, doi:10.3762/bjnano.4.80

Graphical Abstract
  • for such systems [1][2][3][4]. As a perspective, energy storage materials that are based on conversion reactions may offer high theoretical capacities and high theoretical energy densities for hydrogen storage and for electrochemical storage in batteries [5]. Compared to state-of-the-art insertion
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2013

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • playground for physicists and engineers, particularly as a prospect for two-dimensional electronic applications. Nanowire [7] or transistor concepts consisting of only graphene and graphane could be realized. Another possible application is based on its characteristics in terms of hydrogen storage. It has a
  • deficiencies and point defects created during the plasma treatment, our results, when considered all together, point to double-sided hydrogenation of the graphene layers. (2) Graphite may be an alternative solution for hydrogen storage. Since hydrogen-LTP-exposed HOPG possesses a high thermal stability
PDF
Album
Full Research Paper
Published 13 Dec 2012
Other Beilstein-Institut Open Science Activities