Search results

Search for "laser scanning microscopy" in Full Text gives 53 result(s) in Beilstein Journal of Nanotechnology.

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  • Yongcai You,
  • Ruirui Xing,
  • Qianli Zou,
  • Feng Shi and
  • Xuehai Yan

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Graphical Abstract
  • cross-linked networks are also the foundation for a range of biomedical and nanotechnological applications. Interior structure and crystal pattern The fibrillar structure and three-dimensional fibrous network of the C-WY hydrogel were further investigated by confocal laser scanning microscopy (CLSM
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • using confocal laser scanning microscopy (CLSM) in the reflection contrast mode. In cells treated with CYS-AgNPs, GSH-AgNPs and CYS-AuNPs, accumulated NPs were clearly visible intracellularly, while it was not possible to detect such accumulation in the case of treatment with GSH-AuNPs (see Figure 5 and
  • marked with asterisk (*) differ significantly from the negative control (P < 0.05). The NP uptake within L929 cells (a–d) compared to untreated control cells (e–h) as visualized by reflection mode confocal laser scanning microscopy (CLSM). The images show maximum intensity Z-projections of cells stained
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • stimulated growth, and results below 100% to show a growth inhibition. Cell viabilities equal or less than 50% were assumed to indicate a toxic effect [45]. All quantitative WST-8 tests were carried out in triplicate. The data were expressed as means ± standard deviation. Confocal laser scanning microscopy A
PDF
Album
Full Research Paper
Published 27 Dec 2018

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • the setae indeed occurs if pressure changes, confocal laser scanning microscopy (CLSM) was used (see Experimental section). In the projection through a stack of CLSM images, the setae as well as the reflecting air–water interface in between the setae could be monitored (Figure 6c). Cross sections
  • ) and in each segment the number of setae was counted in three randomly selected areas of 0.5 mm2. CLSM investigations of the pressure behavior The air–water interface was analyzed by confocal laser scanning microscopy (CLSM, Leica TSM 500). The laser beam of the microscope was reflected at the air
  • ) Projection through a stack of images using confocal laser scanning microscopy. The picture shows the structure of the setae and the reflecting air layer in between the club-setae. d) Cross section through the image stack at the position of the blue line in (c) at ambient pressure. The shape of the air–water
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • of M-3180 (BJB Enterprises, E = 8.89 MPa). The joint-like elements are made of TC-9445 for the stiff joint, M-3180 for the soft joint, and Vytaflex-30 (Smooth-On, E = 0.45 MPa) for the very soft joints. All the materials were cured at ambient for three days before testing. a) Confocal laser scanning
  • microscopy (CLSM) of a lateral view of discoidal (mushroom-shaped) adhesive hairs in a male ladybird beetle. Differences in the autofluorescence indicate the presence and distribution of different materials. Blue regions (transitions from the hair shaft to the tip structure) indicate portions of the soft
PDF
Album
Full Research Paper
Published 19 Nov 2018

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • monitored by dynamic light scattering and the dose deposited onto the cell surface was determined by a modelling approach. The murine macrophage cell line J774A.1 was then used to study uptake and intracellular fate by means of laser scanning microscopy (LSM), environmental scanning electron microscopy
  • , Sigma-Aldrich) was used to inhibit phagocytosis and micropinocytosis. Cell fixation and labelling for laser scanning microscopy (LSM) To label the proteins involved in endocytotic uptake, the cells were fixed with 4% paraformaldehyde (PFA, Sigma-Aldrich, Switzerland) in phosphate-buffered saline (PBS
  • to remove any leftover dye. The samples were immediately examined after the labelling. Laser scanning microscopy and data restoration Image acquisition was performed with an inverted Zeiss LSM 710 Meta apparatus (Axio Observer.Z1, Zeiss, Switzerland) equipped with 405 nm diode, and 488, 561 and 633
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • Salmonella typhimurium. After treatment with NO550 microparticles, only activated cells caused a green particle fluorescence and could be detected by laser scanning microscopy. NO release was confirmed indirectly with Griess reaction. Our functional NO550 particles enable a simple and early evaluation of
  • -loaded microspheres. Confocal laser scanning microscopy (CLSM) images of activated (A) and inactivated (B) NO550-loaded polymeric microspheres in DPBS including fluorescence emission spectra (C) of the microspheres are shown. UV-irradiated SNP (10 mM, 2 min, 254 nm) was used for 2 minutes to activate
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and
  • nm, emission: 460 nm) channels. Confocal laser scanning microscopy (CLSM) was performed on a Leica SP5 confocal inverse CLSM. The cells were stained with DAPI (nucleus) and Cell mask™ (cell membrane) to indicate the cellular uptake of the nanoparticles. To elucidate the uptake mechanism, several
PDF
Album
Full Research Paper
Published 07 Feb 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • to have a detailed look at the very moment of particle uptake, revealing a remarkable dependency of the observed morphologies on particle size. Alongside the EM analysis we applied confocal laser scanning microscopy (CLSM), biochemical assays for LDH and ATP, flow cytometry, Caspase-3 western
  • measurements. Preliminary, a qualitative examination of the cytotoxic effects was conducted by fluorescence activated cell sorting using FSC/SSC analysis (data not shown) and confocal laser scanning microscopy (Supporting Information File 1, Figure S10). Further experiments examined the LDH release and the
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • with a larger number of arthropod species, it will represent the first reliable method that specifically identifies resilin. The development and improvement of methods applying techniques such as micromechanical testing, atomic force microscopy and confocal laser scanning microscopy (CLSM) have
PDF
Album
Review
Published 01 Sep 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • to retain the polymeric character of the membranes, the amount of lipid used was limited to 10 mol %. Eventually, membranes were analyzed using confocal laser scanning microscopy, voltage clamp measurements and impedance spectroscopy. Results and Discussion Block copolymer synthesis Poly(1,4-isoprene
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • represented as the mean ± SD (n = 3). Confocal laser scanning microscopy images of human cells treated with calcitriol entrapped in C6-PLGA NPs. S2-013 cells: (A) control cells; cells after (B) 2 and (C) 72 h of incubation with C6–calcitriol–PLGA NPs. hTERT-HPNE cells: (D) control cells; cells after (E) 2 and
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • with modern high-resolution elemental analysis techniques and confocal laser scanning microscopy [32][33][34] (Figures 3b, 4c–e, 5b,d), the results of high-resolution transmission electron microscopy analyses clearly indicate that the silica in the gnathobase teeth is composed of only some amorphous
PDF
Album
Video
Review
Published 06 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • liver cancer cells, NIH-3T3 mouse fibroblast cells, and 4T1 mouse breast cancer cells. Confocal laser scanning microscopy (CLSM) images indicated a successful bioconjugation of silica-coated QDs and MQDs with a bio-anchored membrane. Again, Salgueiriño-Maceira et al. [44] reported a new class of
PDF
Album
Review
Published 24 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • (magnetite) embedded (PLLA–Fe). Confocal laser scanning microscopy (cLSM) was performed to determine the intracellular localization of the nanoparticles. The images in Figure 2 clearly show that all particle types were indeed internalized by the cells and not only attached to the cell surface. hHSCs showed a
  • , apoptotic, dead) and taking the percentage of gated cells in the respective gate. Signals from APC-coupled antibodies were analyzed by overlays of several signals in die APC channel. Confocal laser scanning microscopy (cLSM) Confocal laser scanning microscopy was performed to validate the intracellular
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • The extent of internalization of the different QDs and the Au@MnO particles was demonstrated by confocal laser scanning microscopy (Figure 4). After 24 h of incubation, all QD formulations were visible as red dots inside the cells (Figure 4a). Interestingly, the positively charged variant showed the
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • co-localized with marker proteins that help to identify both the uptaking cell type and its activation status (Figure 3b) [50][75][83]. Optical resolution of such co-localizations may be increased by various technical refinements, including confocal laser scanning microscopy which allows for serial
  • additional advantages described for confocal laser scanning microscopy [119][120]. Of note, conventionally prepared slides can be used for SR-SIM and no special preparation is required [121]. We used this technique to localize FITC-labeled SiO2-NP in FFPE tissue sections of mice that were sliced and dewaxed
PDF
Album
Review
Published 23 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • ) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers
  • light microscopy and confocal fluorescence laser scanning microscopy (FCLSM) as can be seen in Figure 3. A freshly broken cross section of original nacre was analyzed by SEM (see below in Figure 4c) and clearly reveals the layered structure of aragonite tablets. The insoluble organic matrix can be seen
  • of the insoluble proteins with Coomassie blue, whereas the space in between the layers does not show any significant stain. The same observation can be made by fluorescence confocal laser scanning microscopy (Figure 3b) for which the thin cuts have been stained with rhodamine B ITC. Also in these
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

  • Stephanie Hirn,
  • Nadine Haberl,
  • Kateryna Loza,
  • Matthias Epple,
  • Wolfgang G. Kreyling,
  • Barbara Rothen-Rutishauser,
  • Markus Rehberg and
  • Fritz Krombach

Beilstein J. Nanotechnol. 2014, 5, 2440–2449, doi:10.3762/bjnano.5.253

Graphical Abstract
  • nucleoside analogue to thymidine, into replicated DNA can be visualized by confocal laser scanning microscopy. As shown in Figure 3, cell proliferation was not significantly altered as shown by this assay. Responses of PCLS after exposure to (nano)particles Cytotoxic response After 4 h of incubation with 20
PDF
Album
Full Research Paper
Published 18 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • /streptomycin, 2% glutamine and 10% fetal calf serum. The cells grown in an incubator with 5% CO2, 100% humidity at 37 °C and incubated with the different silica particles (10 μg/mL) for 2 h. Analysis was performed by using flow cytometry and confocal laser scanning microscopy. Figure 3 was modified with
  • ) or 75 nm (b,d) as well as negative (a,b) or positive (c,d) surface charge through funtionalization with (3-aminopropyl)triethoxysilane (APS) groups. Cells were incubated with particles (10 µg/mL, 2 h, 37 °C) and analyzed by means of flow cytometry (e,f) and confocal laser scanning microscopy (g
PDF
Album
Full Research Paper
Published 08 Dec 2014

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • represent an outstanding drug delivery method [1][2][3]. Recent detailed research of Maysinger et al. measuring the intracellular distribution of fluorescently labeled polymer micelles by using confocal laser scanning microscopy has shown the effect of a drug administered with a polymer DDS. As for polymer
PDF
Album
Review
Published 01 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • with specific organelle markers. Laser scanning microscopy and phase-contrast microscopy were performed in parallel on identical cell areas (Figure 1A). In cells cultured in the presence of Ag-NPs, agglomerated nanoparticles were visible in a region close to the cell nucleus but not in the cell culture
  • uptake by laser scanning microscopy (LSM) LSM was performed to demonstrate the occurrence of intracellular silver nanoparticles in hMSCs after incubation. Therefore, hMSCs were subconfluently grown on 2-well Lab-TekTM glass chamber slides (Thermo Fisher Scientific, Langenselbold, Germany) and
  • both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning
PDF
Album
Full Research Paper
Published 10 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • scanning microscopy) are other techniques that permit to visualize nanoparticles in cells. Therefore, hMSC were cultured in the presence of either 20 µg mL−1 silver (as nanoparticles) or 2 µg mL−1 silver ions (as silver acetate; control to separate the nanoparticle and the ion effect) at 37 °C for 24 h
  • dissolution process in cells (including the localization of low concentrations of small nanoparticles as well as silver ions) imaging at the Ag L3,2 edges is a promising option for future work. Focused ion beam (FIB) and optical microscopy (phase contrast microscopy; fluorescence microscopy; confocal laser
PDF
Album
Review
Published 03 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • ., number of detached magnetite crystals, and the number of nanoparticles in one endosome), we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy). Keywords: biodegradation; mesenchymal stem cells; PLLA
  • period of 14 days, primarily by means of transmission electron microscopy (TEM), in order to demonstrate their degradation. Furthermore, confocal laser scanning microscopy (CLSM) and flow cytometry were used to monitor the nanoparticle load of individual cells. As a probe we chose tailor-made PLLA
  • cultures. All values are triplicates with the error bars representing the standard deviation. Confocal laser scanning microscopy (CLSM) Confocal laser scanning microscopy (CLSM) was applied to demonstrate the intracellular distribution of nanoparticles over the period of 14 days. As described in [26], for
PDF
Album
Full Research Paper
Published 29 Oct 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • presence of the endocytotic proteins which are involved in endocytosis in both cell types (Figure 2). To achieve this, laser scanning microscopy (LSM) was applied as the primary tool for this investigations. Flotillin-1 and clathrin heavy chain could be visualized in J774A.1 cells, but caveolin-1 was not
  • fluospheres (molecular probes) were used at a concentration of 20 µg/mL in RPMI. Laser scanning microscopy of fixed and living cells For LSM imaging, the cells were fixed with 3% paraformaldehyde (PFA, Sigma-Aldrich, Switzerland) in PBS for 15 minutes at room temperature. The cells were then washed with 1
  • . Laser scanning microscopy imaging revealed particle uptake in J774A.1 and A549 cells. (A–C) Uptake of 40 nm PS NPs (NP: red, cytosol: grey). (A) Untreated cells with 40 nm NPs. (B) 40 nm NPs and cytochalasin D (cytoD) in J774A.1 and chlorpromazine (cpz) in A549 cells. (C) 40 nm NPs and
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014
Other Beilstein-Institut Open Science Activities