Search results

Search for "low energy" in Full Text gives 270 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited
  • [14]. NEs can be obtained through two general approaches, that is, high-energy methods and low-energy methods. The high-energy methods are characterized by using equipment such as sonicators, high-speed homogenizers, and high-pressure homogenizers, which provide high energy input during processing
  • , leading to the generation of dispersed material on a nanoscale [15]. The low-energy methods are characterized by the use and control of the chemical energy of the system in the formation of droplets on the nanoscale. A crucial point is that these systems can be obtained at low cost and with eco-friendly
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • field-effect transistor (JFET) or SQUID readout. The principal advantage of these CEB-based detectors over TESs [19] is the effect of direct electron cooling, when electrons with high energy are removed from a nanoabsorber, leaving only the quasiparticles with low energy and, accordingly, low electron
PDF
Album
Full Research Paper
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • homogenization); (2) low-energy methods, which requires the precipitation of nanoparticles from homogeneous systems (such as microemulsions); and (3) methods based on organic solvents (emulsification–diffusion method) [35]. Liposomes are vesicles composed of a phospholipid and cholesterol with an aqueous core
PDF
Album
Supp Info
Review
Published 03 Jan 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • yielded deposits with high gold content, ranging from 45 to 61 atom % depending on the beam current and on the cleanliness of the substrates surface. Keywords: dissociative electron attachment; dissociative ionization; focused-electron-beam-induced deposition (FEBID); gold deposit; low-energy electrons
  • . In FEBID, the irradiation of the substrate with a high-energy focused electron beam results in elastic and inelastic electron scattering, including ionizing events. The latter leads to the production of numerous reactive, low-energy scattered and secondary electrons. These play a significant role in
  • the precursor decomposition and thus in the deposit formation [16]. Hence, the decomposition of the precursor molecules is not only effectuated by the primary electron beam. In fact, the reactivity of these low-energy electrons [24] may even determine the fragmentation of the precursor molecules
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • modelled by the supercell geometry. Au-fcc(011)/Ge(001) As already discussed, there are several possibilities of building a low-energy Au-fcc(011)/Ge(001) heterostructure, and here we compare their calculated interface energy values and structural parameters. First, we join the Au-fcc(011) plane oriented
  • . Small displacements of atoms from initial positions are observed in the interface layer (rAu = 0.62 and rGe = 0.22 Å), and the distance between Ge and Au interfacial planes is equal to 1.78 Å (again, very similar to our first low-energy heterostructure). These numbers suggest that variant C is a good
PDF
Album
Full Research Paper
Published 15 Nov 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • Nowadays, organometallic complexes receive particular attention because of their use in the design of pure nanoscale metal structures. In the present work, we present results obtained from a series of studies on the degradation of metal(II) bis(acetylacetonate)s induced by low-energy electrons. These slow
  • complexes, it is desirable to investigate the physical chemistry, in particular, the processes induced by the interaction of these molecular systems with low-energy electrons. We performed a series of collision experiments of low-energy electrons with metal bis(acetylacetonate)s, ML2, where M and L
  • pathways (e.g., branching ratio), will be helpful for using this family of organometallic compounds. Results and Discussion The interaction of low-energy electrons with gaseous compounds ML2 (M: Mn, Co, Ni, Cu, and Zn; L: acac) produces the parent anion [ML2]− and the fragment anion [L]− as the predominant
PDF
Album
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • mechanism of CO2 on MOFs featuring OMSs. Wu et al. revealed that the interactions between the OMSs of Mg-MOF-74 and HKUST-1 and CO2 molecules are primarily of physical nature [24]. This type of adsorption mechanism offers the advantage of low energy requirements in material regeneration. Another significant
PDF
Album
Review
Published 20 Sep 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • . Furthermore, several domains of nanotechnology and industry use nanoscaled samples that need to be controlled to an extreme level of precision. To reduce the irradiation-induced damage and to limit the interactions of the ions with the sample, low-energy ion beams are used because of their low implantation
  • depths. Yet, low-energy ion beams come with a variety of challenges. When such low energies are used, the residual gas molecules in the instrument chamber can adsorb on the sample surface and impact the ion beam processes. In this paper we pursue an investigation on the effects of the most common
  • . Keywords: angle dependency; argon; contamination; energy dependency; ion bombardment; low energy; molecular dynamics; silicon; simulations; water; Introduction Low-energy ion beams offer substantial improvements and possibilities to reduce the damage production on the surface of samples [1][2]. In recent
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • with transparency, easy tuning, and low energy requirements of the bottom-up synthesis, opens the way for the development of novel biohybrid systems with a wide range of applications, from biological preservation of living cells to the development of novel whole-cell bioinorganic catalytic materials
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • Santiago Grijalvo Carlos Rodriguez-Abreu CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain 10.3762/bjnano.14.29 Abstract The formulation of nanoemulsions by low-energy strategies
  • research on the fabrication of polymer nanoparticles from low-energy nanoemulsions, focusing on phase inversion composition. We particularly emphasize their biomedical applications as drug carriers. 2 Nanoemulsions Nanoemulsions are constituted by nanoscale droplets (20–200 nm) dispersed in a continuous
  • -called high-energy methods (also called work-based methods [5]), this energy is supplied by external mechanical means, such as in high-pressure homogenizers or from ultrasound devices, with high dissipation (mostly in the form of heat) and, therefore, low energy efficiencies. In contrast, the so-called
PDF
Album
Review
Published 13 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • -precipitation, and aerosol-spraying) have been widely used for the synthesis of various nanostructured materials due to their low cost, low energy requirements, and ease of control of the solution parameters to meet the growing demand for efficient photocatalysts that can be produced on a large industrial scale
PDF
Album
Review
Published 03 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • the use of upconversion nanoparticles to convert NIR to shorter-wavelength light for photoreactions. These nanoparticles usually contain rare-earth metal ions, which have long-living excited states. Thus, they achieve sequential energy absorption and convert two or more low-energy (NIR) photons into
PDF
Album
Review
Published 09 Feb 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • problems concerning increasing energy demands, a revolutionary solution is needed with two goals to be simultaneously reached: energy saving and increase in the capability of novel computers. The future of high-performance computing with low energy consumption is clearly associated with technologies with
PDF
Editorial
Published 10 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • conducting channel in both junctions introduced the function and employed Fermi distribution functions for electrons and holes in the normal leads Equation 11 defines the low-energy cross-correlated current noise in the presence of a temperature gradient and represents the main general result of the present
PDF
Album
Full Research Paper
Published 09 Jan 2023

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • total optical loss is assumed to be 23.3 cm−1, including a 14.3 cm−1 waveguide loss [27] and a 9 cm−1 mirror loss for a waveguide refractive index of 3.4. Although there are many bound states in the active region, most electrons remain in several low energy levels. So seven confined subbands are
PDF
Album
Full Research Paper
Published 23 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • energy required to break atomic bonds in hydrocarbons can be quite low (less than 5 eV) [19]. Therefore, even low-energy secondary electrons (SE), which are released from the surface around the point of impact of the EB, are capable of dissociating hydrocarbon molecules. Secondary electrons are usually
PDF
Album
Full Research Paper
Published 22 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • sputtered largely depends on the incidence angle. This fraction is the largest for incidence angles between 70 and 80° defined with respect to the sample surface. Overall, it changes from 25% to 65%. Keywords: angle dependency; argon ions; contamination; focused ion beams; ion bombardment; low energy
  • . Depending on the application, the ion beam energy is in the range of 10 to 30 keV when small spot sizes are required (i.e., spot sizes in the nanometre range) and at a few keV or even in the sub-keV range when low surface damage or minimized atomic mixing is required. One example is low-energy depth
  • milling is essential because most samples analysed in high-precision instruments are prepared using this method. This can be best achieved using low-beam energies, ideally in the sub-keV range [18], since low-energy ion beams (under 500 eV) produce a thinner amorphous layer due to their lower penetration
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • sample. The full width at half maximum (FWHM) energy resolution of the UPS experiment is 0.05 eV. Results and Discussion Figure 1a and Figure 1b report the structural characterization of the ZnTPP/Fe(001)–p(1 × 1)O sample in the reciprocal and in direct space, respectively. The low-energy electron
PDF
Album
Full Research Paper
Published 30 Aug 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • electron energy loss spectroscopy (HREELS) [53][54], Raman spectroscopy [55], and low-energy electron microscopy (LEEM) [56] as well as by theoretical analysis [57][58][59]. It is now well established that electron irradiation leads to cleavage of C–H and S–H bonds, followed by the formation of C–C bonds
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • considered a basic cell for superconducting signal neurocomputers designed for the fast processing of a group signal with extremely low energy dissipation. It turned out that for this purpose it is possible to modify the previously discussed element of adiabatic superconducting neural networks. The ability
PDF
Album
Full Research Paper
Published 18 May 2022

Plasma modes in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2022, 13, 292–297, doi:10.3762/bjnano.13.24

Graphical Abstract
  • wire length) and geometric capacitances C1 and C2 (per unit length). In the absence of any interaction between the wires they represent two independent transmission lines where low-energy plasma excitations propagate with velocities and , respectively, in the first and the second wires. Note that the
  • of inter-wire interaction. This situation can be realized provided the wires are located close enough to each other in which case the cross-capacitance Cm may become of the same order as C1,2 implying κ ≪ 1. Provided the wires are thick enough, the low-energy Hamiltonian in Equation 2 is sufficient
PDF
Album
Full Research Paper
Published 04 Mar 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • and their efficiency, and they induce different fragmentation patterns. Thus, in order to better understand the performance of individual FEBID precursors, studies on their interaction with low-energy electrons are important. Metal carbonyls are generally well suited for the use in FEBID as many of
  • , partly achieving high metal content in the deposit. A good overview of this work prior to 2008 can be found in Utke and co-workers [3]. In the context of the role of low-energy electron-induced processes in FEBID several studies on DEA and DI of metal carbonyl precursors, including Fe(CO)5, W(CO)6 and Cr
  • (CO)6 have been reported in recent years [14][15][16][17]. Earlier studies on the low-energy electron interaction with metal carbonyls include an electron transmission spectroscopy study [18] on W(CO)6, Cr(CO)6 and Mo(CO)6 from the early 1980s, dissociative electron attachment studies on Fe(CO)5, W(CO
PDF
Album
Full Research Paper
Published 04 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • ]. 3 Applications of nanofluidics with tunable slip length 3.1 Drag reduction Reducing drag is of great significance in many areas related to nanotechnology, such as nanotribology [117], nanomedicine [118], and electrokinetics [119] due to the low energy dissipation. For instance, it has been reported
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • amplitude of the probe oscillations sharply drops to zero [24]. This phenomenon is usually caused by a combination of small oscillation amplitude, inappropriately low spring constant of the probe (and thus too low energy stored in the vibration), strong attractive forces caused by some surface layers (water
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021
Other Beilstein-Institut Open Science Activities