Search results

Search for "manganese" in Full Text gives 70 result(s) in Beilstein Journal of Nanotechnology.

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • films is expected to be compensated by a mixed valence state of the manganese cation (Mn3+/Mn4+). Particularly, RS in LMO has been reported to be larger for oxygen vacancy-rich films [6][7]. Depending on the oxygen content (δ), the LMO structure changes from orthorhombic to rhombohedral at high δ [8
  • grown by pulsed injection metal–organic chemical vapour deposition (PI-MOCVD) in a JIPELEC reactor [26][27]. The precursor solutions were prepared using tris(2,2,6,6-tetramethyl-3,5-heptanedionato)lanthanum(III) [La(thd)3] and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) [Mn(thd)3
  • vapour deposition (PI-MOCVD). The structural transition between orthorhombic and rhombohedral phases has been correlated with δ and the manganese oxidation state of the films. Furthermore, the tuned LMO films integrated in a silicon-based substrate showed resistive switching behavior as a proof-of
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • .) antimony by spray pyrolysis [9] or by sol–gel methods followed by spin-coating and annealing in different environments [10], ii.) manganese by long-time annealing of Mn/SnO2 bilayers in air at 200 °C [11] or by co-precipitation [12], iii.) aluminum, copper or indium all by spray pyrolysis from ethanolic
PDF
Album
Full Research Paper
Published 02 Jan 2019

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • containing the synthesized materials were used as working electrodes (WE), while lithium metal (Li; Albemarle Corporation) was used as counter and reference (RE) electrodes. In the full cell set-up, the Si/C composite electrodes were cycled vs lithium nickel manganese cobalt oxide (LiNi1/3Mn1/3Co1/3O2, NMC
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • photovoltaic materials. Additionally, the cell fitted with an encapsulating protective layer showed a remarkable stability with the PCE unchanged in a more than 2500 h test trial (Figure 3d) [69]. Manganese(II) ions were found to substitute Pb(II) in MA-Pb-Cl-Br HPs, the perovskite preserving the crystal
PDF
Album
Review
Published 21 Aug 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • ) oxide (Fe3O4); manganese(IV) oxide (MnO2); Introduction Organic contaminants are widely distributed in water and soil due to the excessive emissions of industrial processes, which causes a great threat to the ecosystem as well as to human health [1][2][3]. Most of the organic pollutants are toxic and
  • successful loading of of iron oxide and manganese oxide in the two-step procedure. To further characterize the morphologies and structures of Fe3O4/diatomite and MnO2/Fe3O4/diatomite, transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) analyses were also
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018
Graphical Abstract
  • with a surface orientation defined by the substituents [20]. The self-assembly of manganese meso-tetra(4-pyridyl)porphyrin on Cu(111) was studied using low temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to resolve molecular structures by Chen et al. [21]. A
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • nanoparticles, carbon nanotubes, manganese oxides nanoparticles, and carbon dots) on electrodes through codeposition with chitosan, which offers attractive applications in antimicrobial coatings, biosensors, microbial fuel cells, and energy storage materials [14][15][16][17][18]. Among the studies on the
PDF
Album
Full Research Paper
Published 17 Apr 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • Abstract In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption
  • , for example such as linker concentration, heavy ions concentration, pH value, or inorganic core composition, and such studies are in progress and will be a subject of subsequent papers. Conclusion Ferrite nanoparticles doped with calcium, cobalt, nickel, or manganese show differences in ion adsorption
PDF
Album
Full Research Paper
Published 28 Feb 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • sites and Brønsted acid sites and then oxidised into coordinated NH3 species and ionic NH4+, while NO is oxidised into NO2 via Equation 7 and Equation 8, respectively. The manganese and ceria cations used in this reaction contribute to the large amount of Lewis acid sites. It is noted that the NH4
  • temperature was identified to be at 219 °C and 418 °C. Meanwhile, the 3% Mn-out-CNTs400 peaks were around 440 to 520 °C. Generally, the valance state and electron environment of manganese are two key components that affect the reduction steps and reduction temperature [50]. Previous work done by Cao et al
PDF
Review
Published 27 Feb 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • interfacial oxidation–reduction under mild conditions. For example, Mn3O4/CeO2 hybrid nanotubes were created by a template-based process involving a redox reaction between the cryptomelane-type manganese oxide nanowire template and Ce(NO3)3 [20]. Ce–Mn nanotubes were also fabricated by treating Ce(OH)CO3
PDF
Album
Full Research Paper
Published 16 Nov 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine–manganese
  • effects are metal-insulator transitions or superconductivity which were reported for organic charge-transfer crystals realized by a combination of strongly electron-accepting and strongly electron-donating molecules [9][10]. Recently, a heterostructure of manganese phthalocyanine (MnPc) and structurally
  • density of states as obtained from the DFT calculations. While the electronic structure of CoPc and F16CoPc is qualitative similar after surface contact, the manganese center in the F16CoPc/MnPc yields a larger local magnetic moment and more strongly occupied metal 3d states close to the Fermi level. Both
PDF
Album
Full Research Paper
Published 06 Oct 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • as LiMn2O4 and LiFePO4, which have a capacity of merely 150 mAh/g and 170 mAh/g, respectively [5][6]. Manganese dioxide (MnO2) is one of the most promising metal oxide as a replacement for the Li-ion electrode material owing to its high theoretical capacity (308 mAh/g), environmental friendliness and
  • ]. However, there are few reports explaining their electrochemical reaction response relating to their different manganese oxide crystalline structures. In this work, different polymorphs of MnO2 (α-, β-, and γ-) were produced by a microwave hydrothermal method. Freestanding graphene/MnO2 cathodes were
PDF
Album
Full Research Paper
Published 14 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • SiO2 (178.49 mg/g) [54], manganese-impregnated zinc sulphide nanoparticles deposited on activated carbon (191.57 mg/g) [55] and γ-Fe2O3 loaded active carbon (195.55 mg/g) [56]. We believe the efficient removal of MB is mainly attributed to the small pore size and the high specific surface area of CP6
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

  • Florian Rückerl,
  • Daniel Waas,
  • Bernd Büchner,
  • Martin Knupfer,
  • Dietrich R. T. Zahn,
  • Francisc Haidu,
  • Torsten Hahn and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 1601–1615, doi:10.3762/bjnano.8.160

Graphical Abstract
  • Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg, Germany 10.3762/bjnano.8.160 Abstract Manganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic
  • transfer; electronic properties; manganese phthalocyanine; Review Introduction The family of metal-centered phthalocyanines has been considered for future technological applications because of their favorable electronic and optical properties and their advantageous chemical stability [1][2][3][4][5][6][7
  • ][8]. Phthalocyanine molecules can harbor a number of metal ions, in particular transition-metal ions such as cobalt, iron or manganese. A special characteristic of transition-metal centered phthalocyanines is, that transition-metal ions often are characterized by a magnetic moment, and therefore such
PDF
Album
Review
Published 04 Aug 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • Abstract We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton
  • signals that could occur from the substrate. (a) Manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) molecules. (b) Annealing procedure applied to the blended thin films prepared by OMBD. (c) Well-ordered β-MnPc film after annealing. Optical micrographs for molecular thin films grown on
PDF
Album
Full Research Paper
Published 14 Jul 2017

Structural properties and thermal stability of cobalt- and chromium-doped α-MnO2 nanorods

  • Romana Cerc Korošec,
  • Polona Umek,
  • Alexandre Gloter,
  • Jana Padežnik Gomilšek and
  • Peter Bukovec

Beilstein J. Nanotechnol. 2017, 8, 1032–1042, doi:10.3762/bjnano.8.104

Graphical Abstract
  • that of the undoped ones. Dopant ions do not preserve the MnO2 phase at higher temperatures nor do they destabilize the cryptomelane structure. Keywords: α-MnO2; doping; EXAFS; nanorods; XANES; Introduction The wide range of physical and chemical properties of manganese dioxide (MnO2), which exists
  • in several polymorphic forms, originates from the different structures in which MnO6 octahedrons are linked by edge- or corner-sharing in different ways to form layered or channel structures [1][2]. The negative charge of the Mn–O network arises from the mixed oxidation states of manganese (Mn4+, Mn3
  • responsible for the electroneutrality, while in hollandite the tunnels are occupied with Ba2+ cations. Cryptomelane MnO2 with the chemical composition KMn74+Mn3+O16·nH2O is the most extensively studied octahedral manganese oxide molecular sieve. A minor amount of Mn3+ replaces Mn4+ in the center of the
PDF
Album
Full Research Paper
Published 10 May 2017

Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols

  • Ruslan Zaripov,
  • Evgeniya Vavilova,
  • Iskander Khairuzhdinov,
  • Kev Salikhov,
  • Violeta Voronkova,
  • Mohammad A. Abdulmalic,
  • Francois E. Meva,
  • Saddam Weheabby,
  • Tobias Rüffer,
  • Bernd Büchner and
  • Vladislav Kataev

Beilstein J. Nanotechnol. 2017, 8, 943–955, doi:10.3762/bjnano.8.96

Graphical Abstract
  • protocol. Analogous effect of a drastic increase of the spin coherence time in molecular magnets with the CPMG protocol was observed and comprehensively discussed in our previous work on pulse ESR on model binuclear 1,2-diphosphacyclopentadienyl manganese complexes [20]. There we have studied in detail the
PDF
Album
Full Research Paper
Published 27 Apr 2017

Energy-level alignment at interfaces between manganese phthalocyanine and C60

  • Daniel Waas,
  • Florian Rückerl,
  • Martin Knupfer and
  • Bernd Büchner

Beilstein J. Nanotechnol. 2017, 8, 927–932, doi:10.3762/bjnano.8.94

Graphical Abstract
  • Daniel Waas Florian Ruckerl Martin Knupfer Bernd Buchner IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany 10.3762/bjnano.8.94 Abstract We have used photoelectron spectroscopy to determine the energy-level alignment at organic heterojunctions made of manganese phthalocyanine (MnPc) and the
  • the two lowest unoccupied molecular orbitals (LUMOs) is rather small. Keywords: C60; manganese phthalocyanine (MnPc); organic interfaces; photoelectron spectroscopy (PES); Introduction Within the last decades we have witnessed considerable progress in the development and understanding of organic
  • and an appropriate electron acceptor is a crucial process. Often, fullerenes (C60) and their derivatives are used as acceptor materials. Amongst the transition-metal phthalocyanines MnPc is exceptional in some respects. Due to the participation of manganese 3d orbitals to the molecular electronic
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • scalable and relatively cost effective [14][15][16]. In particular, among all the TMO NPs, titanium dioxide [17], manganese oxide [18], iron oxide [19] and zinc oxide [20] have attracted the most attention due to their particular interesting and advantageous properties. By changing the reaction conditions
  • it a promising catalyst for fuel cells. Manganese oxide (MnO, Mn2O3, MnO2, Mn3O4, Mn2O7)–graphene hybrids Pyrolusite (MnO2), hausmanite (Mn3O4) and bixbyite (Mn2O3) are important minerals of manganese. These oxides have attracted great attention because of their environmental benignity and the high
  • abundance of Mn in nature. Among all the oxides of manganese, Mn3O4 has been studied widely as an anode material for LIB to achieve higher specific capacities than graphite [120]. Mn3O4 has a spinal structure and is a potentially interesting electrode material as an electrolytic supercapacitor because of
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • last 3d elements, scandium and zinc, the rest of the metals possess several oxidation states. The presence of several stable oxidation states serves as a basis of catalytic activity in redox reactions and is most noticeable for vanadium, chromium, and manganese. In particular, vanadium has the highest
PDF
Album
Full Research Paper
Published 07 Mar 2017

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • electrochemical properties (C = 160–180 mAh·g−1 at C/10; U = 2.5–4.6 V) remains attractive until now [2][3][4]. Most of the studies deal with Li(Ni,Mn)O2 with equimolar amounts of nickel and manganese. The influence of the Ni/Mn ratio on the properties of these materials is discussed in [5]. One of the obstacles
PDF
Album
Full Research Paper
Published 09 Dec 2016

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • them with “magnetic” atoms such as iron, manganese and cobalt. Other theoreticians published in that time similar works [2]. It has been predicted that the Curie temperature of such diluted doped magnetic semiconductor oxides can be quite high, even above room temperature. Especially promising was zinc
  • growth of single crystals, are well known and well elaborated. It seemed that nothing could prevent the success of the synthesis of ferromagnetic ZnO doped by iron, manganese, cobalt, or other “magnetic” atoms. Indeed first successes came soon. Ferromagnetic ZnO films were synthesised by pulsed laser
  • ferromagnetic behaviour of zinc oxide and developed our own method for the synthesis of pure and doped nanocrystalline ZnO films. The obtained data are summarized in Figure 1 for pure ZnO and ZnO doped with manganese, cobalt, iron and nickel [6][7][8][9]. The full list of used references can be found in [6][7
PDF
Album
Review
Published 07 Dec 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • capacity of 875.5 mAh g−1 after 200 cycles and 1005.5 mAh g−1 after 250 cycles with a significant coulombic efficiency of 99.5%. Keywords: carbon nanofiber network; electrospinning; lithium-ion battery; manganese oxide; nitrogen modification; Introduction Lithium-ion batteries (LIBs) have been identified
  • , transition metal oxides are the focus of intensive efforts for LIB anode materials due to their remarkable specific capacity, low cost and environmental compatibility [6][7][8][9][10][11]. Manganese oxide (MnO) is a particularly good choice owing to its high theoretical specific capacity of 755 mAh g−1, low
  • carbon materials can be successfully applied for LIB electrodes. Experimental Fabrication of the carbon network All chemicals were of analytical degree and were used without any purification. A typical procedure is as follows. Firstly, 0.45 g of manganese acetate tetrahydrate (Mn(COOH)2·4H2O), together
PDF
Album
Full Research Paper
Published 14 Sep 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • investigations on applications of carbon nanomaterials in bioimaging [4][5][6][7][8][9], e.g., graphene, graphite oxide with manganese residues [10], gadolinium anchored on fullerenes [11], and nanodiamonds [12]. Sitharaman’s and Wilson’s discoveries of gadonanotubes, such as ultrashort single-wall carbon
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

  • Jacek Wojnarowicz,
  • Roman Mukhovskyi,
  • Elzbieta Pietrzykowska,
  • Sylwia Kusnieruk,
  • Jan Mizeracki and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 721–732, doi:10.3762/bjnano.7.64

Graphical Abstract
  • 141, 02-507 Warsaw, Poland 10.3762/bjnano.7.64 Abstract Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol
  • indication of additional phases. Spherical Zn1−xMnxO particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles. Keywords: manganese
  • metallic Mn. Metallic manganese is antiferromagnetic, while many alloys of manganese, in which the average Mn–Mn distance is greater than that of metallic manganese, are ferromagnetic [40]. MnO, Mn2O3 and MnO2 are antiferromagnetic [41], while Mn3O4 is ferromagnetic [42][43]. ZnMnO3 is paramagnetic [44][45
PDF
Album
Full Research Paper
Published 19 May 2016
Other Beilstein-Institut Open Science Activities