Search results

Search for "metallic nanostructures" in Full Text gives 46 result(s) in Beilstein Journal of Nanotechnology.

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • phenomenon characterizing aggregates of metallic nanostructures. The electromagnetic energy of visible light can be localized inside nanostructures below the diffraction limit by converting the optical modes into nonradiative surface plasmon resonances. The energy of the confined photons is correlated to the
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

  • Chamanei Perera,
  • Kristy Vernon,
  • Elliot Cheng,
  • Juna Sathian,
  • Esa Jaatinen and
  • Timothy Davis

Beilstein J. Nanotechnol. 2016, 7, 751–757, doi:10.3762/bjnano.7.66

Graphical Abstract
  • the device too large for lab-on-a-chip applications [3] and requires precise alignments [12][14]. Nano-plasmonic sensors utilising metallic nanostructures can be used to overcome these limitations. In addition, they allow miniaturisation of the overall device size as well as improving the ease of
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2016

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • functionalization with biologically pertinent molecules (antifouling poly(ethylene glycol) silane and biotinylated thiols) was used for the selective immobilization of proteins onto metallic nanostructures relevant to the development of LSPR biosensors and characterized by atomic force microscopy (AFM). Results and
PDF
Album
Letter
Published 01 Dec 2015

Imaging of carbon nanomembranes with helium ion microscopy

  • André Beyer,
  • Henning Vieker,
  • Robin Klett,
  • Hanno Meyer zu Theenhausen,
  • Polina Angelova and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1712–1720, doi:10.3762/bjnano.6.175

Graphical Abstract
  • /Si wafers [12], but on other substrates, CNMs are not (or only barely) visible. In particular, it is not possible to directly image freestanding CNMs by regular optical microscopy. Indirect optical methods require the attachment of particles, fluorescent dyes [13], metallic nanostructures [14] or
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • mesoscale organization of the structures formed. As growth occurs in many cases under non-equilibrium conditions, the resulting structures result from a competition between kinetics and thermodynamics. With respect to metallic nanostructures, the morphology is essentially determined by kinetics and results
  • , atomistic processes can be selectively promoted or hindered. Using a pre-patterned substrate, networks of metastable, metallic nanostructures exhibiting different geometries can be fabricated on metallic substrates by self-organized growth. Self-ordering proceeds by the preferential nucleation of species on
PDF
Album
Full Research Paper
Published 19 Mar 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • nanowire suspension was placed on Si/SiO2 substrates on which interdigitated Ti/Au electrodes were patterned by photolithography (Figure 4). FIBIM is a direct patterning method employed for the design of metallic nanostructures. The method is based on the interaction of an ion beam with the surface
PDF
Album
Full Research Paper
Published 12 Feb 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • (which takes place very quickly) in order to preserve the metallic nanostructures necessary for the SERS activation by removing oxides by formation of water-soluble complexes with ammonia. Next, the copper plate was immersed in a solution of 1,2,4-triazole, which acts as a corrosion inhibitor by
PDF
Album
Full Research Paper
Published 29 Dec 2014

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • for the study and detection of surface molecules have already been given. Since both SFG and CARS mechanisms deal with visible photons, they represent ideal candidates to obtain large intensity gains from surface-enhanced (SE) mechanisms in metallic nanostructures, alike to SERS. Basically, the
  • difficult to tailor metallic nanostructures that can support very broad or multi-frequency resonances, only partial and limited plasmonic oscillations are usually obtained. Therefore, though very high theoretical enhancements have been predicted (up to 1012 for SE-CARS [50]), this is barely reproduced in
  • strong quadrupolar (and magnetic dipolar) contribution can be collected from metallic nanoparticles and could somehow lead to a SE-SFG signal as well. 5 SE-CARS spectroscopy Surface-enhanced CARS performed on metallic nanostructures can be considered as the third-order nonlinear counterpart of SERS. In
PDF
Album
Review
Published 28 Nov 2014

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • field around the metallic nanostructures can be successfully coupled to the molecular spin state changes brought on by the Fe centers of the SCO film. The LSPR technique was sensitive enough to detect the thermal spin transitions in thin films of up to 60 nm with a conventional optical absorption setup
PDF
Album
Review
Published 25 Nov 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • electrons oscillation on certain metallic nanostructures (e.g., Cu, Ag and Au). This radiation generates strong localized electromagnetic fields around the metallic nanostructures and leads to greatly enhanced optical absorption and scattering occurring at specific wavelengths, which depends not only on the
  • nature of the metal, but also on the size and shape of the metallic nanostructures. For example, the plasmon resonance of silver can be tuned from UV to the visible range by reducing the size of silver particles in the nanometer range. Similarly, it is possible to shift the plasmon resonance of gold from
  • that the resonant wavelength and SPR intensity depend not only on the nature of the metal, but also on the size and shape of the metallic nanostructures. The control of parameters such as composition, size and shape of plasmonic nanoparticles facilitates the design of nanostructures interacting with
PDF
Album
Review
Published 23 May 2014

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • Beilstein TV. Keywords: hole-mask colloidal nanolithography; localized surface plasmon resonance sensing; low-cost large-area plasmonic nanostructures; multilayer fabrication; surface-enhanced infrared absorption spectroscopy (SERS); Introduction Optics with metallic nanostructures has generated keen
  • samples (f) and (i), for which 220 nm diameter PS spheres and 480 nm PMMA are used. Only for the sample (4b) we use a silicon substrate, and for all other samples glass substrates are used. Figure 4a shows simple elongated metallic nanostructures, which are evaporated with a small constant tilt angle of θ
PDF
Album
Video
Full Research Paper
Published 06 May 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • -field in the vicinity of nanostructures. In this Thematic Series, various examples for the use of optical near-fields and near-field optics are presented. Metallic nanostructures, especially noble metals such as gold and silver, are efficient for nano-focusing and controlling light on the nanoscale
PDF
Editorial
Published 19 Feb 2014

Simulation of electron transport during electron-beam-induced deposition of nanostructures

  • Francesc Salvat-Pujol,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2013, 4, 781–792, doi:10.3762/bjnano.4.89

Graphical Abstract
  • -induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron
PDF
Album
Full Research Paper
Published 22 Nov 2013

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments at the nanoscale. Keywords: adiabatic nanofocusing; Fourier optics; metallic wire modes; plasmonics; scanning near-field optical microscopy (SNOM); Introduction Metallic
  • nanostructures support collective oscillations of the electron gas, which couple strongly to light. At extended metal–dielectric interfaces, the resulting surface-bound modes, termed surface plasmon polaritons (SPPs), may propagate along the interface. At geometric singularities, i.e., in regions of deep
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the
  • recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide
  • extraction of energy. Plasmonic excitations in metallic nanostructures are a famous example of this. It has been known for decades that the interaction of the electrons of a metal with light can lead to local enhancement of the electrical field, which is utilized in spectroscopy to achieve local sensitivity
PDF
Album
Full Research Paper
Published 14 May 2013

Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

  • Christian Obermair,
  • Marina Kress,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 824–830, doi:10.3762/bjnano.3.92

Graphical Abstract
  • -time observation of the processes within the electrochemical cell [49][50][51][52][53], making them a valuable tool for studying electrochemical processes on the nanometer scale. Recently, we demonstrated the local electrochemical deposition of metallic nanostructures and nanowires mechanically induced
PDF
Album
Full Research Paper
Published 05 Dec 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
PDF
Album
Video
Review
Published 29 Aug 2012

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • . Consequently, these nanostructures enable the realization of spectroscopic detection schemes, such as surface-enhanced Raman spectroscopy (SERS) [21]. The SERS activity of these enzymatically grown metallic nanostructures has been characterized with the help of a simple conductivity measurement [7]. Of course
PDF
Album
Full Research Paper
Published 18 May 2012

Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits

  • Jonathan Berson,
  • Assaf Zeira,
  • Rivka Maoz and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2012, 3, 134–143, doi:10.3762/bjnano.3.14

Graphical Abstract
  • in the fabrication of various metallic nanoscale objects and periodic nanostructures [1][2][3][4][5][6][7][8][9][10][11][12]; however, a comprehensive chemical methodology applicable to the planned assembly of metallic nanostructures of arbitrary shape and size, spanning variable length scales, is
PDF
Album
Supp Info
Letter
Published 16 Feb 2012

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • ; lithography; metallic nanostructures; self-assembled monolayers; thiols; Introduction Covering the range from tens of micrometers down to nanometers, the scope of applications of metal structures in electronics [1][2], sensing [3][4][5][6][7], electrochemical analysis [8], optics and imaging [9][10][11][12
PDF
Album
Full Research Paper
Published 06 Feb 2012

The atomic force microscope as a mechano–electrochemical pen

  • Christian Obermair,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 659–664, doi:10.3762/bjnano.2.70

Graphical Abstract
  • patterns can be written reproducibly. Nanoscale structures and lines of copper were deposited, and the line widths ranged between 5 nm and 80 nm, depending on the deposition parameters. A procedure for the sequential writing of metallic nanostructures is introduced, based on the understanding of the
  • induced with the tip of an AFM [28]. Herein, we demonstrate that by combined passivation/depassivation of surfaces, complex metallic nanostructures can be selectively deposited by using the tip of an AFM as a mechano–electrochemical pen in the sense that it allows the local mechanical depassivation of a
PDF
Album
Full Research Paper
Published 04 Oct 2011
Other Beilstein-Institut Open Science Activities