Search results

Search for "nanodiamonds" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm
  • micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod. Keywords: crystal growth; encapsulation; nanoparticles; photoluminescence; ZnO nanorods
  • . Thus the options for lasing wavelength and resonant mode orders are limited. There is a large variety of nanoparticles that have various luminescent properties and potential applications. Luminescent nanoparticles including semiconductor quantum dots, nanodiamonds (NDs) with nitrogen-vacancy (NV
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

  • Mudar A. Abdulsattar

Beilstein J. Nanotechnol. 2013, 4, 262–268, doi:10.3762/bjnano.4.28

Graphical Abstract
  • experimentally in nanodiamonds, such as the lines 1132, 1134, 1140, 1150, and 1240 cm−1 in references [2][4][5][7][8], respectively. These lines all belong partially to the originally distorted bulk diamond line at 1332 cm−1, which appears at different positions in different sizes of nanocrystals. C–H vibrations
PDF
Album
Full Research Paper
Published 15 Apr 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition. Keywords: CVD diamond doping
  • mirror composed of TiO2/SiO2 layer pairs is fabricated by magnetron radio-frequency sputtering. In a second step, nanodiamonds with a diameter of less than 20 nm (Figure 8b) are spin coated onto the dielectric mirror. The area density of the nanocrystals may be chosen by the concentration of the
  • color centers in small nanodiamond crystals with diameters well below the wavelength, guaranteeing an efficient light extraction. Moreover, single nanodiamonds can be implemented into dielectric cavities enhancing the efficiency, as demonstrated in Section 4. We will discuss our approaches to
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

  • Andrei E. Surdu,
  • Hussein H. Hamdeh,
  • Imad A. Al-Omari,
  • David J. Sellmyer,
  • Alexei V. Socrovisciuc,
  • Andrei A. Prepelita,
  • Ezgi T. Koparan,
  • Ekrem Yanmaz,
  • Valery V. Ryazanov,
  • Horst Hahn and
  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2011, 2, 809–813, doi:10.3762/bjnano.2.89

Graphical Abstract
  • SiC [5], nanodiamonds [6], etc. As we can conclude from these works, the highest value of the critical current in the zero magnetic field is Jc ~ 106 A/cm2 in a temperature range of 5–25 K, and the highest value at a magnetic field of 8 T is Jc ~ 104 A/cm2 at 4.2 K; no significant increase was
PDF
Album
Letter
Published 14 Dec 2011
Other Beilstein-Institut Open Science Activities