Search results

Search for "nanoflakes" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • the NO removal activity. 0.5 Mn/(Mn + Ce) molar ratio was found to be the optimum loading amount for Mn–CeOx/CNT catalyst preparation. From the HRTEM images, an uneven shape and fuzzy crystal lattice was identified on the metal nanoflakes suggesting that the Mn–CeOx/CNT catalyst is amorphous in
PDF
Review
Published 27 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • )–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by
  • of which greatly facilitate the transfer of photogenerated charges across the heterojunction and inhibit their fast recombination. In addition, the two-dimensional (2D) morphology of g-C3N4nanosheets and CT nanoflakes provides enough reaction sites due to their larger surface area and enhances the
  • such materials possess a large surface area, providing abundant active sites for reaction, and the short bulk diffusion length reduces the probability of recombination of the photogenerated charges. Herein, we report the optimized synthesis of sheet-like 2D CT nanoflakes for the first time via the
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • process is known as one of the scalable methods to synthesize MoS2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS2 nanoflakes, which were prepared from molybdenum trioxide (MoO3) by a facile hydrothermal method, have been studied. Material characterization was performed
  • functional theory; gas sensor; hydrothermal method; methanol; MoS2 nanoflakes; xylene vapor; Introduction Recent efforts in exploring two-dimensional (2D) materials have led to the introduction of a new family of materials known as transition metal dichalcogenides (TMDs), which show remarkable electrical
  • nanoflakes. There are numbers of articles which report the successful growth of flower-like MoS2 nanoflakes using this technique [19][20][21][22][23]. Due to the high surface-to-volume ratio, activity, tunable band gap, low electrical noise and acceptable electrical conductivity, MoS2 is considered as one of
PDF
Album
Full Research Paper
Published 16 Feb 2018

Structural properties and thermal stability of cobalt- and chromium-doped α-MnO2 nanorods

  • Romana Cerc Korošec,
  • Polona Umek,
  • Alexandre Gloter,
  • Jana Padežnik Gomilšek and
  • Peter Bukovec

Beilstein J. Nanotechnol. 2017, 8, 1032–1042, doi:10.3762/bjnano.8.104

Graphical Abstract
  • ramsdelitte MnO2 with 1 × 2 tunnel structure could be also used for this purpose. Nanoflakes of this material, arranged in the yolk–shell secondary structure, can be prepared through a simple one-pot synthesis of the precursor solution irradiated with UV light. The incorporation of cobalt into the structure
  • improved the electrical conductivity, while nanoflakes and the secondary structure increase the specific surface area, leading to improved electrode kinetics by facilitating mass transport [24]. However, there is a lack of detailed structural studies of these materials in order to understand why cobalt as
PDF
Album
Full Research Paper
Published 10 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
PDF
Album
Review
Published 24 Mar 2017

Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

  • Tianyu Xiang,
  • Feng Xin,
  • Jingshuai Chen,
  • Yuwen Wang,
  • Xiaohong Yin and
  • Xiao Shao

Beilstein J. Nanotechnol. 2016, 7, 776–783, doi:10.3762/bjnano.7.69

Graphical Abstract
  • reduce CO2 with water. H2 was introduced into this process as an electron donor. Ru/NaTaO3 was found to have the best activity (CH4 51.8 μmol/(g·h)) and product selectivity in converting CO2 to CH4. Junwang Tang and his team [17] prepared KTaO3 nanoflakes by a solvothermal method in a hexane–water
PDF
Album
Full Research Paper
Published 01 Jun 2016
Other Beilstein-Institut Open Science Activities