Search results

Search for "nucleation" in Full Text gives 349 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • -emulsification or spontaneous emulsification [16]. Here, one component present in the oil phase diffuses into the aqueous phase, resulting in the formation of metastable oily droplets by local supersaturation produced near the interface followed by oil nucleation. The ouzo effect is an example of this phenomenon
PDF
Album
Review
Published 13 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • [17][18]. Because of their interactions with solid surfaces, these peptides have been shown to be able to functionalize nanostructures, catalyze the formation of nanostructures, and modify the nucleation, growth and self-assembly processes [19][20][21][22][23][24]. For this study, we have selected a
  • NH3 alone, NH3 + 0.04 mM SiBP, and NH3 + 0.4 mM SiBP, the growth regime followed the classical aggregative growth and monomer addition model [37]. According to this model, at the early stages of the reaction, the dominant regime is homogeneous nucleation of SiO2 particles. The growth continues by
  • released silicic acid is then deposited onto particles with larger radius. Evidence of coalescence was observed in our study as well (shown by the arrows in Figure 3 and Figure 4). At later stages of the reaction, when the precursor concentration drops below the nucleation threshold, the dominant regime
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • around particles because they are large enough to provide several nucleation sites [2][3], leading to the shape of flowers. Since SiO vapor can be only formed in the cavities, there is a non-uniform distribution of SiO gas concentration around the cavities. Namely, the closer to the cavities, the higher
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • silica/PS monopods was regrown through successive additions of a small amount of tetraethoxysilane (TEOS) interspersed with centrifugation/redispersion cycles in order to avoid the occurrence of secondary nucleation of silica [30]. Figure 2b–f show the morphology of silica/PS nanoparticles after 1, 2, 4
PDF
Album
Full Research Paper
Published 06 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • removal of acetylacetonate ligands, the reaction mixture that undergoes thermolysis contains mixed ligands. The thermal decomposition of such salts at the second stage can significantly affect the processes of particle nucleation, composition, and morphology [26][27]. To estimate the completeness of
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • impressive stability over time and over sterilization procedures, probably due to the colocalization of reduction and nucleation/growing sites during their formation. The stability was maintained or was found to be even higher in PolyCD-capped Au@Ag BMNPs, whereas monometallic Ag NPs produced from PolyCD in
  • the same experimental conditions showed poor stability [14]. Although we are currently unable to elucidate the comprehensive mechanism that occurs during the reduction processes, we suppose that the direct reduction of gold ions by PolyCD takes place at sites involved in the nucleation/growing process
  • of NPs and that this step is preparatory for the subsequent deposition of the silver shell. Conversely, in the case of monometallic Ag NPs, the reduction of silver ions (usually mediated by ascorbic acid) takes place at sites which are not involved in the nucleation/growing process leading to poorly
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • nucleation rate, (i.e., slow nucleation could increase crystal growth and as a result produce large-sized particles [54]). As a result, Bi2O3 nanoparticles affect the shape and size of MIL101(Fe) and this may be due to the addition of Bi2O3 to the precursor, altering the balance of ligands and simultaneously
  • slowing the nucleation rate of MIL101(Fe). To verify the formation of a heterojunction between MIL101(Fe) and Bi2O3, TEM and HRTEM images were obtained. As seen in Figure 3b and Figure 3c, TEM images of BOM-20 confirm that tiny Bi2O3 nanoparticles closely and uniformly adhere to the surface of MIL101(Fe
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • groups with strong affinity and the scaffolding nature of rGO anchoring trimetallic NPs. The large particle sizes of the trimetallic system could be due to the slower reduction and prolonged nucleation of the constituents. The heterogeneous nature of the electrocatalyst surface is clearly evident from
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • epicuticular wax structures [36]. It was found that on waxy leaves, icing started from nucleation sites on the surface of wax projections or in nanoscale depressions between them. This is why the real contact area of ice crystals was limited to a few sites at the nanoscale on or between wax projections. After
  • . antarctica provides interesting data about surface adaptations in the plant adapted to low temperatures of Antarctica. Two layers of particulate wax observed here may potentially lead to an increase of the freezing time due to the shift of ice nucleation from the cuticle surface to the tips of wax
PDF
Album
Full Research Paper
Published 22 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • obtained materials will be evaluated regarding advanced applications in energy, environment, and biology. Review Confined crystallization of monocrystalline coordination polymers Crystallization of single crystals basically involves nucleation and growth stages. During both stages, the assembly of atomic
  • ]. The negatively charged biomacromolecules were believed to be one of the key factors to guide nucleation and growth of ZIF-8 crystals. The monocrystalline shells provide specific protection for the relatively weak biomacromolecules. Therefore, the protected biomacromolecules can remain active under
  • networks into Prussian blue single crystals, a gradient crystallization environment was built up through using a volatile inhibiting agent [111]. Evaporation of the inhibiting agent naturally forms a vertical gradient in the reactor, forcing nucleation and growth of single crystals inside the network at
PDF
Album
Review
Published 12 Aug 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • using Zn and Co acetates, together with 2-methylimidazolate, as described in Figure 1a. The hydrothermal process is beneficial for facilitating the nucleation and growth of bimetallic ZIF as well as reducing the synthesis time. The chemical composition of ZnxCoy particles was controlled by adjusting the
  • -step growth mechanism (i.e., nucleation and growth) [39]. The different formation mechanisms are mainly responsible for determining the particle sizes of ZIF-8 and ZIF-67. After carbonization and chemical etching processes, we obtained a series of ZnxCoy–C/CNT composites, as shown in Figure 1e–1g, in
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • photochemical reduction [32], pulsed laser-induced photolysis [38], or controlled decoration with Ag NPs using an electroless plating technique [44]. Photochemical synthesis permits the control of nucleation and growth rate without using organic additives. Xu et al. employed laser irradiation of ZnO nanorods in
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • adatoms exceeds that for critical island nucleation, were observed here. We also found bright features with an apparent height of 1.6 ± 0.2 Å, which does not correspond to the height (≈2.5 Å) of a Au(111) single atomic step. The β-phase is characterized by a mesh of domain boundaries with an apparent
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • pyrolysis of methane on a curved alumina surface. The surface provides the catalyst as well as the “strain” required to direct nucleation and growth. Figure 1a is a scanning electron microscopy (SEM) overview image showing a number of glassy carbon microneedles, which grow in the direction of the gas flow
  • Figure 2b). Therefore, we consider the most likely growth mechanism to be that proposed by S. Amelinckx and co-workers [16]. Their model explains the formation of multishell closure domes in which nucleation is attributed to the initial formation of fullerene domes. These originate from the “blisters
  • pyrolysis. These are transitory species and do not remain in the glassy carbon tubules. The early stages of this process can be seen, in Figure 1b, as the nucleation “blisters” on the surface of the glassy carbon formed on the alumina. These then develop into glassy carbon microneedles. Conclusion In this
PDF
Album
Full Research Paper
Published 19 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • flower-like nanostructures indicates that their nucleation centre is not located in the plane of the substrate. The formation of spherical structures can be explained as follows: the presence of a large number of OH− ions makes it possible to generate a large number of nucleation centres in solution in a
PDF
Album
Full Research Paper
Published 03 May 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • , the interfacial synthesis method confines the coordination of the MOF to the solvent interface, which ensures good control over MOF nucleation and growth processes [37][38]. Consequently, it is a promising approach to synthesize a defect-free MOF film. In comparison, the counter-diffusion method
  • and SEM images of the α-Al2O3 disks are given in Supporting Information File 1, Figure S1. Prior to heterogeneous nucleation of ZIF-8 crystals on the porous α-Al2O3 disks, free-standing ZIF-8 thin films were fabricated to verify the feasibility of continuous ZIF-8 crystal growth via an interfacial
  • –f). The formation of a micrometer-thick membrane is consistent with the results of interfacial syntheses of other MOF membranes [39][40]. The crystal growth is known to depend on the solution concentration, which has influence on both the nucleation rate and diffusion rate. As the concentration of 2
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • reduction of the respective compound while ionization through electron removal represents oxidation. Thus, if sufficient proximity is provided, DEA as an initial fragmentation step should provide the prerequisite for metal–metal bond formation and nucleation points for further CO loss as is shown
PDF
Album
Full Research Paper
Published 04 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • noted that the nucleation sites of the oxide appear randomly scattered at the middle part of the terrace. There are steps initially both at the upper-left corner and lower-right corner, as indicated by the dotted lines. The circles (b) and (c) also show the initial oxidation sites. The oxide initially
  • towards a thin film regime. Conclusion We investigated three oxidation growth modes – oxidation, etching, and transition modes – in the third of which both oxidation and etching occur. Reaction dynamics in the oxidation of Si(113)-(3 × 2) was observed in real time using VT-STM. Nucleation of the oxide and
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • misunderstanding of physicochemical basics of this technique. For this purpose, a presentation of the underlying processes leading to NP production is first provided. This part is constituted of a brief introduction to (i) sputtering and (ii) the kinetics of NP nucleation and growth in solutions. Then, the
  • NPs with desired size, shape, and composition [2]. Colloidal synthesis allows one to obtain metal, oxide, halide, chalcogenide, and other types of NPs but the mechanisms of their formation are different, even though all of them include an initial nucleation step followed by a growth step [77]. In this
  • stabilizer [79]. The final amount of NPs in the solution and their final size depend on the kinetics of NP formation and, mainly, on the ratio between the rates of nucleation and growth steps [77]. The stability of obtained NPs depends on many factors but the affinity of the stabilizer reagent to the NP
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • are used as sensing material [57]. Proposed growth model for fab-fracs This section specifically discusses the various parameters that influence the final shape of a lab-grown fab-frac using the sol–gel technique. Nucleation is a random and probabilistic event that happens on a substrate. As a fluid
  • depicts the different stages of fractal formation and conditions that lead to a specific fractal shape. Initially, when the sol starts drying, voids are created due to effusion of gases from the sol. Thereafter, random nucleation and cluster growth takes place. After clusters form on the substrate
  • . using a solvothermal method, was reported [80]. Here, the authors discussed a five-stage growth process comprising polymerization, nucleation, primary growth, secondary growth, and final growth from single nanosheets to final dendritic structures. Figure 18a and Figure 18b show SEM images of
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • molecule, on a SiO2 surface. The simulations reveal the processes driving the initial phase of nanostructure formation during FEBID, including the nucleation of Pt atoms and the formation of small metal clusters on the surface, followed by their aggregation and the formation of dendritic platinum
  • process, including nucleation of Pt atoms, formation of small metal clusters on the surface followed by their aggregation, and eventually, the formation of dendritic platinum nanostructures. The morphology of the nanostructures grown during the FEBID process has not yet been thoroughly investigated on the
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • performance [58]. In addition, Liu et al. [59], inspired by the cystine pathological biomineralization process, developed a zinc-directed cystine assembly to mimic chloroplast photosynthesis. Zn2+ promotes rapid nucleation of cystine crystals and regulates crystal morphology through splitting growth
PDF
Album
Review
Published 12 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
PDF
Album
Review
Published 09 Sep 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • Ecomet 04-ZG [42] using Ed equal to −1.0 V. Preliminary nucleation pulses of −0.5 V and −1.2 V for 0.1 s were applied in the cases of Cu and Au electrodeposition, respectively. The initial Cu current collector and the first Cu segment were selectively dissolved in a solution containing 0.3 M H2SO4 and
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • monitor the STM-induced nucleation, growth, and ripening of self-assembled monolayers in a more controlled fashion. Söngen et al. [77] provide insight into the interaction of organic molecules with bulk insulators by discussing the adsorption of ethanol on both calcite and magnesite using three
PDF
Editorial
Published 23 Aug 2021
Other Beilstein-Institut Open Science Activities