Search results

Search for "oxidative stress" in Full Text gives 77 result(s) in Beilstein Journal of Nanotechnology.

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • have adverse consequences and raised the question whether its method of preparation and solubility are contributing factors. In contrast to the results with NM-212, other nanoceria have been demonstrated to have therapeutic potential for multiple conditions with an oxidative stress/inflammation
  • ). The initial experiment was repeated with as-prepared and 75, 102, and 152 day partially dissolved nanoceria. Nanoceria reactivity Oxidative stress, as mass-based biological oxidative damage (mBOD), and surface-based biological oxidative damage (sBOD), of NM-211, NM-212, and the solvothermally
  • more available oxygen on the surface of nanoceria not exposed to high temperature. Biological identity of as-prepared and partially dissolved nanoceria Nanoceria has the potential to act as a pro- or antioxidant, depending on its valence, and the oxidative stress level of the system under study
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • considered the ion content (Ag+) of those nanoparticles. Toxicity assays could be performed by using oxidative stress and other reliable markers, such as 8-oxoguanine DNA glycosylase 1 (OGG1) and nuclear factor erythroid 2-related factor 2 (Nrf2) [132] or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
PDF
Album
Supp Info
Review
Published 14 May 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • to generate more reactive oxygen species (ROS) and to induce oxidative stress could be a reason for their antibacterial activity against R. solanacearum in tobacco plants [23]. Aside from MgO NPs, other nanomaterials, including titanium dioxide (TiO2 NPs), zinc oxide (ZnO NPs), copper oxide (CuO NPs
  • oxidative stress response, which makes the p-translucent silkworm a good model to study Parkinson’s disease [92][93]. Mammalian model organisms are mostly used to study the efficacy of new drugs for human-related diseases and also in the screening of antimicrobial drugs [94]. Recent reports indicate
  • concentrations of Ag NPs [122]. Reactive oxygen species (ROS), which are involved in cell signaling and homeostasis [123], are considered a characteristic side-effect of oxygen metabolism. High levels of ROS in living organisms induce oxidative stress, which results in damage to the DNA, proteins, and lipids
PDF
Album
Review
Published 12 Feb 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • oxidative stress and cause apoptosis. In addition, intracellular redox homeostasis and gene expression can be modulated [26]. Lanthanide ions are usually not reported as highly toxic. However, they can interact with proteins, enzymes, and other biomolecules [27][28] and might also cause oxidative damage or
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • induction of oxidative stress, the release of metal ions and the non-oxidative damage. Synthesis of antimicrobial nanoparticles Over the last years, techniques for synthesizing antimicrobial nanoparticles have advanced significantly due to their use in both biomedical and industrial applications. The
  • ][132]. When the size of titanium dioxide is reduced to the nanoscale (TiO2 NPs), its photocatalytic property is greatly improved, generating more reactive oxygen species (ROS). ROS damages bacterial cells, DNA chains, and other cellular structures through oxidative stress. Therefore, the use of TiO2
  • simpler way without major equipment requirements. Mechanisms of antimicrobial action The exact antibacterial mechanisms of NPs are being exhaustively investigated and some processes have been elucidated, including oxidative stress induction, metal ion release, and non-oxidative damage, which affect
PDF
Album
Review
Published 25 Sep 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • are considered the most effective, but unfortunately pure iron is toxic because it leads to high oxidative stress. To avoid this problem there is a lot of ongoing work regarding the design of core–shell particles with pure iron cores [63][64]. Octopod SPIONs (30 nm) were also shown to be better than
  • later by iron oxidative stress [81]. Dextran-coated SPIONs were found to accumulate in large amounts in tumor sites in mice, in contrast to PEG-coated SPIONs, which did not accumulate, even in the presence of an external magnet at the tumor site. The PEG-coated SPIONs exhibited a longer blood
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • environment. ROS refer to molecules like singlet oxygen, superoxide anion, and radicals, which are responsible for producing oxidative stress in cells followed by cell death [4]. Photosensitizer molecules must be nontoxic before irradiated with light, must produce high amounts of ROS when irradiated with
PDF
Album
Full Research Paper
Published 17 Jul 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • platelets [16]. Additionally, SNPs were found to induce pre-thrombotic states through surface-driven activation of the coagulation factor XII [17][18]. Finally, SNPs are known to induce oxidative stress in several cell lines including endothelial cells [19] and leucocytes [20][21], a process that in vivo
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • of protamine also lowered the minimum inhibitory concentration by two orders of magnitude. This is attributed to the enhanced catalytic activity upon binding with protamine, which resulted in altered oxidative stress and a higher generation of reactive oxygen species (ROS). Kurdekar et al. developed
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • mediated through oxidative stress. Hence, it is likely that the down-regulation of VEGF may have contributed to the reduced expression of LCLAT1 in the polyplex-treated cells. RFC5 (replication factor C 5) is generally associated with the proliferation of cell nuclear antigen (PCNA) [48] and has also been
PDF
Album
Full Research Paper
Published 17 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • and 200 µg/mL, respectively, was added to the blood samples. This indicates that the nanorods may exhibit a slight hemolytic behavior at a higher CB-Hap NR concentration. The hemolytic activity at higher concentrations can be attributed to the oxidative stress induced by introducing CB-Hap nanorods
  • result in oxidative stress [61]. Conclusion This study is a pioneering work in the preparation of hydroxyapatite nanorods using marine waste cuttlefish bones using an oil-bath-mediated precipitation method. The resultant powders from the precipitation process were investigated via systematic
PDF
Album
Full Research Paper
Published 04 Feb 2020

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • studies indicating that AgNPs negatively impact cell membranes, interfere with signaling pathways, disrupt the cell cycle, and cause mitochondrial dysfunction, oxidative stress, DNA damage and apoptosis [7][8][9]. Many reports on AgNP toxicity attribute it fully or partially to dissolved or released ionic
  • reduces or increases their safety. For this purpose, the efficiency of NP uptake, cell viability, apoptosis induction, oxidative stress response and genotoxicity parameters of L929 cells treated with prepared NPs were determined and compared with control cells. A range of NP concentrations were tested for
  • significant number of late apoptotic cells, while CYS- and GSH-coated AgNPs were shown to be safer than expected. In both cases, more than 88% of fibroblasts survived the treatment with the highest dose applied (10 mg Ag L−1). As the exposure to NPs is known to induce oxidative stress in cells [75][76], ROS
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • oxidative stress [7]. The release of reactive oxygen species from tobacco smoke provokes a series of systemic immunomodulatory effects that leads to a compromised inflammatory response. These destructive mechanisms also affect collagen synthesis and the skin cellular reparative effects [8][9]. It has been
  • size and the EE of TOC. Antioxidant effect of NLCs containing TOC Following the results obtained in the 2D cell model, the study of the protective effect of NLC T10-TOC was carried out on HSE. CS contains many components able to elicit oxidative stress, which can induce the cytoprotective enzyme heme
PDF
Album
Full Research Paper
Published 29 Aug 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • . In conclusion, the high cellular uptake and the antioxidant properties associated with the phenolic moieties in the modified particles allow for a potential application in biomedical areas. Keywords: antioxidants; chitosan; maghemite nanoparticles; oxidative stress; phenolic compound; Introduction
  • induce oxidative stress in living organisms via the Fenton reaction. Therefore, it is crucially important in biological applications of iron oxide nanoparticles to counteract this undesirable effect by antioxidants. The combination of magnetic targetability with antioxidant properties is an interesting
  • most potent free radical scavenging activity measured by using the DPPH assay, all three phenolic compound-modified nanoparticles reduced intracellular ROS levels in a similar manner as the control, as indicated by flow cytometry. Because intracellular oxidative stress has been shown to be elevated in
PDF
Album
Full Research Paper
Published 20 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • and lysosomes in microglia [10]. None of the NPs investigated resulted in cytotoxicity, decreased cell viability, apoptosis, autophagy or inflammation. However, exposure to NPs led to oxidative stress via depletion of cellular glutathione and to a downregulation of neuronal differentiation markers in
  • , oxidative stress and an increase in inflammatory cytokines in dopaminergic neuron-like cells. In vivo intranasal administration of these NPs corroborated these findings and showed localization of Si-NPs mainly in the striatum and hippocampus [13]. As LTS finds its application in vessels of the brain, the
  • cytotoxicity in HUVECs. Furthermore, Si-NPs were shown to induce oxidative stress and inflammation mediated by mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [21] pathways that are related to cell proliferation and differentiation but also to
PDF
Album
Full Research Paper
Published 25 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • , Kingdom of Saudi Arabia 10.3762/bjnano.10.91 Abstract Oxidative stress (OS) plays an important role in the pathology of certain human diseases. Scientists have developed great interest regarding the determination of oxidative stress caused after the administration of nano-graphene composites (PEG-nGO
  • polyethylene glycol (PEG). PEGylation of nGO was confirmed by Fourier-transform infrared spectroscopy (FTIR), UV spectroscopy and TEM. The average size distribution of nGO and PEG-nGO was determined by using dynamic light scattering (DLS). Subsequently, an in vivo study measuring a marker for oxidative stress
  • increased OS even after 4 h. In conclusion increased OS induced by PEG-nGO could be detrimental to brain, heart and kidneys. Keywords: nano-graphene oxide; nanomedicine; oxidative stress; PEGylation; Introduction The recent progress in nanoscience and nanotechnology that has facilitated the synthesis of
PDF
Album
Full Research Paper
Published 18 Apr 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • conditions. As research studies show, exposure to this gas can lead to an increase in oxidative stress in the body, resulting in behavioral and learning-memory impairments. Also, there is a consistent relationship between NO2 and respiratory and asthmatic problems at mean daily concentrations (20–80 ppb
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • a pivotal role in homeostatic regulation, growth and response in oxidative stress conditions in order to control or repair diseased cells by initiating apoptosis. As expected, the elevated expression of p53 up to 1.44-fold (Figure 8A) clearly suggests that apoptotic induction occurred in the treated
  • CellROX deep red fluorescence intensity through flow cytometry following the manufacturer’s protocol. The oxidative stress upon CaP@5-FU NP treatment in the HCT-15 cell line was characterized by this assay. Briefly, HCT-15 cells were grown in a 35 mm dish followed by treatment with an IC50 concentration
  • cell death involves the generation of intracellular reactive oxygen species (ROS) molecules (e.g., O2−, OH·, H2O2) [44]. The elevated level of ROS species interferes with the normal metabolism of the cells by disrupting cell structures such as lipids, proteins and DNA [45]. This increased oxidative
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed. Keywords: nanomaterial classification; nanomaterial history; nanotoxicity; oxidative stress; reactive oxygen species; regulations; Review Introduction
  • cells can cause granulomatous reactions, oxidative stress and inflammation, leading to fibroplasia and neoplasia in lungs. The results also suggested that humans are routinely exposed to carbon nanotubes and showed that the outcome is similar to the vehicle exhaust samples collected in Paris, ambient
PDF
Album
Review
Published 03 Apr 2018

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • release of ions from the TiO2 surface, the generation of reactive oxygen species (ROS) and the subsequently induced oxidative stress [4][46]. For example, according to Li et al. [4] and Qiu et al. [47], the cytotoxicity of Au NPs occurs via the generation of ROS and the peroxidation of lipids. Katsumiti
PDF
Album
Full Research Paper
Published 17 Oct 2017

A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

  • Svitlana Prylutska,
  • Svitlana Politenkova,
  • Kateryna Afanasieva,
  • Volodymyr Korolovych,
  • Kateryna Bogutska,
  • Andriy Sivolob,
  • Larysa Skivka,
  • Maxim Evstigneev,
  • Viktor Kostjukov,
  • Yuriy Prylutskyy and
  • Uwe Ritter

Beilstein J. Nanotechnol. 2017, 8, 1494–1501, doi:10.3762/bjnano.8.149

Graphical Abstract
  • induced by extensive reactive oxygen species (ROS) generation [56][57]. According to Kaeidi et al. [58], preconditioning with mild oxidative stress may enhance some endogenous defense mechanisms and stimulate cellular adaptation to subsequent severe oxidative stress after the treatment with Cis. C60
PDF
Album
Full Research Paper
Published 20 Jul 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • ), oxidative stress, redox activities, etc.) and apical toxic effects (e.g., respiratory effects shown in short-term inhalation studies). The initial tier (0) focuses on gathering data regarding intrinsic material properties (e.g., water solubility, primary particle size (PPS), surface area, composition
PDF
Album
Supp Info
Review
Published 05 May 2017

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • , and cellular luminescence was weak (Figure 5, top). Treatment with hydrogen peroxide (8 μg/mL, 15 min) initiated activation of oxidative stress in the cells; upon such treatment, the cells were stained more intensely (Figure 5, bottom). The use of O-dots allowed a clear visualization of the oxidative
  • stress region: A bright glow was observed in the area of preferential localization of mitochondria in the perinuclear space. Increasing the number and size of nucleoli ("ribosomes factories”) correlates with the primary compensatory response of cells to oxidative stress during the first 15 min of contact
  • greater sensitivity to oxidative stress. For comparison, a similar staining manipulation was carried out for the same ST cells treated with hydrogen peroxide, but without subsequent fixation (Supporting Information File 1, Figure S20). The micrographs obtained demonstrate that only some of the cells were
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

  • Refat Abdel-Hamid and
  • Emad F. Newair

Beilstein J. Nanotechnol. 2016, 7, 1104–1112, doi:10.3762/bjnano.7.103

Graphical Abstract
  • phenolic content; Introduction Gallic acid (GA) is a natural polyphenolic compound found in fruits, vegetables and several other plants [1]. The study of the role of GA in providing better therapeutic outcomes against arsenic-induced toxicity showed that GA is effective against arsenic-induced oxidative
  • stress [2]. A facile and ultrasensitive sensor based on gold microclusters electrodeposited on sulfonate-functionalized graphene that was immobilized on the surface of a GCE was fabricated and applied for the simultaneous determination of gallic acid and uric acid [3]. The electrochemical mechanism and
PDF
Album
Full Research Paper
Published 29 Jul 2016
Other Beilstein-Institut Open Science Activities