Search results

Search for "photocatalytic" in Full Text gives 191 result(s) in Beilstein Journal of Nanotechnology.

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • the organic compounds are discussed, as well as their influence on the degradation reaction rates. The degradation efficiency in photocatalytic processes was higher for DBMP (98%) than for phenol (approximately 50%). This proves the high efficiency of magnetite in the photocatalytic degradation of
  • designing an effective photocatalytic process. The factors that influence photocatalytic efficiency include the photocatalyst bandwidth, the recombination rate of photogenerated electron–hole pairs, the use of solar energy, and problems with catalyst degradation. Magnetite is a common auxiliary mineral in
  • environmental impact. The progress of the reaction was monitored by measuring the organic compound concentration. In order to determine the efficiency of the photocatalytic process, the organic compounds were also degradated through ozonolysis. Results and Discussion The selected catalysts were characterized by
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • the photocatalytic performance [4][5]. Because TiO2 only exhibits photochemical activity under UV excitation, which accounts for a small fraction (ca. 4%) of the solar energy, numerous modification methods such as doping with nonmetals, coupling with other catalysts, and attaching to supports have
  • photocatalytic, photoelectrochemical, and photovoltaic–photoelectrochemical systems. The features and the operating mechanism of photoelectrochemical water splitting are detailed in [10][11]. Photoelectrochemical water splitting has attracted much research interest because it has some outstanding advantages. The
  • ) nanocomposite by sol–gel method for visible-light-induced photocatalytic hydrogen evolution [8]. The photocatalyst consisted of dense TiO2 particles covering functionalized MWNTs and exhibited good photoactivity under visible light (λ > 420 nm), but the photoelectrochemical water splitting showed a low hydrogen
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • , catechin, epicatechin, and ferulic acid [14]. These metabolites may be potential reducing agents for the formation of AgNPs. Until now, some studies have been reported on the use of pineapple peel for the generation of AgNPs [15][16][17][18]. For example, Agnihotri et al. [15] reported photocatalytic and
PDF
Album
Full Research Paper
Published 13 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • percentage of carbon introduced. This demonstrates the potential of HBN to be used as a photocatalytic material. However the studies in the sense of exploring its photocatalytic ablity intented for environmental applications is very limited [15][16][17]. This has motivated us to extend our study on the
  • specified subject. The present study discusses LED light-responsive modified boron nitride (MBN) towards its photocatalytic application. The HBN was modified by introducing carbon through the solid-state reaction method. Such introduction of carbon into the HBN lattice transformed it into a good light
  • conditions. The linear sweep voltammetry (LSV) studies were conducted under both dark and light conditions with a scanning speed of 5 mV/s. Photocatalytic activity The LED-light-driven photocatalysis experiments were performed in a 250 mL conical flask containing 50 mg of the as-synthesized material and 200
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • modification is crucial in photocatalysis. Bi-based photocatalytic nanomaterials have gotten much interest as they exhibit distinctive geometric shapes, flexible electronic structures, and good photocatalytic performance under visible light. They can be employed as stand-alone photocatalysts for pollution
  • control and energy production, but they do not have optimum efficacy. As a result, their photocatalytic effectiveness has been significantly improved in the recent decades. Numerous newly created concepts and methodologies have brought significant progress in defining the fundamental features of
  • photocatalysts, upgrading the photocatalytic ability, and understanding essential reactions of the photocatalytic process. This paper provides insights into the characteristics of Bi-based photocatalysts, making them a promising future nanomaterial for environmental remediation. The current review discusses the
PDF
Album
Review
Published 11 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • catalytic and photocatalytic properties [46] porous TiO2 frameworks formed by the annealing of titanicone films may serve as catalytic supports [47]. Titanicone films can also be pyrolyzed under Ar to yield conducting TiO2/carbon composite films with important electrochemical applications as electrodes for
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • environment, human health, and other biotas. Among the technologies to treat NO pollution, photocatalytic oxidation under visible light is considered an effective means. This study describes photocatalytic oxidation to degrade NO under visible light with the support of a photocatalyst. MgO@g-C3N4
  • heterojunction photocatalysts were synthesized by one-step pyrolysis of MgO and urea at 550 °C for two hours. The photocatalytic NO removal efficiency of the MgO@g-C3N4 heterojunctions was significantly improved and reached a maximum value of 75.4% under visible light irradiation. Differential reflectance
  • conversion, DeNOx index, apparent quantum efficiency, trapping tests, and electron spin resonance measurements were carried out to understand the photocatalytic mechanism of the materials. The high reusability of the MgO@g-C3N4 heterojunction was shown by a five-cycle recycling test. This study provides a
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • photocatalysts. ZnO has a higher quantum efficiency than that of TiO2 since it absorbs more energy in the UV region [4][5][6][7]. Furthermore, ZnO is a low-cost photocatalyst with high photocatalytic activity, nontoxicity, light sensitivity, and stability [8][9][10]. The photodegradation of organic substances by
  • of 10 °C/min. The zeta potential was measured by analyzing 0.1 g of ZnO in 10 mL of water using a Malvern ZetasizerPro. The solid UV–vis DRS was carried out using a JASCO V550 UV–vis spectrometer. Photocatalytic degradation reaction The photocatalytic degradation of a dye solution under visible and
  • UV light using green-synthesized ZnO nanoparticles from rosin and zinc chloride salt was investigated using a batch photocatalytic reactor. Firstly, 0.1 g of ZnO NPs was added to 50 mL of MO or MB solution with an initial concentration of 10 mg/L. The solution was then submitted to magnetic stirring
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • to have excellent biocompatibility with cells [70]. Ramanarayanan and Swaminathan utilized guava leaves to prepare CDs, which were then utilized for the synthesis of a CD-TiO2 nanocomposite. The CD-TiO2 nanocomposite possesses good photocatalytic ability to degrade methylene blue dye [71]. White
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • China 10.3762/bjnano.13.91 Abstract Improving the photocatalytic performance of metal–organic frameworks (MOFs) is an important way to expand its potential applications. In this work, zero-dimensional (0D) Bi2O3 nanoparticles were anchored to the surface of tridimensional (3D) MIL101(Fe) by a facile
  • solvothermal method to obtain a novel 0D/3D heterojunction Bi2O3/MIL101(Fe) (BOM). The morphology and optical properties of the as-prepared Bi2O3/MIL101(Fe) composite were characterized. The photocatalytic activity of the synthesized samples was evaluated by degrading chlortetracycline (CTC) under visible
  • -light irradiation. The obtained BOM-20 composite (20 wt % Bi2O3/MIL101(Fe)) exhibits the highest photocatalytic activity with CTC degradation efficiency of 88.2% within 120 min. The degradation rate constant of BOM-20 toward CTC is 0.01348 min−1, which is 5.9 and 4.3 times higher than that of pristine
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFexNi1−xO3 perovskite oxides to
  • decompose the methylene blue molecules. Accordingly, the synthesis condition of pH 0, calcination temperature at 700 °C, and Fe/Ni ratio = 7/3 could form LaFe0.7Ni0.3O3 perovskite oxides as highly efficient photocatalysts. Moreover, various conditions during the photocatalytic degradation were verified
  • Fenton reaction, a photo-Fenton reaction excited by ultraviolet light or visible light can achieve a faster reaction rate and a complete degree of oxidation [19]. Besides, it shows a positive relationship between light intensity and photocatalytic activity. With the assistance of light irradiation, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • one-dimensional material with high carrier mobility (308 cm2·V−1·s−1) and rapid response time [8][9][10]. These one-dimensional materials are ideal for photovoltaic and photocatalytic applications. The KP15 is considered to be a novel low-dimensional material with layered structure, high hole carrier
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • nanotubes were formed by TiO2 nanotubes that uniformly anchored with Bi2WO6 nanoparticles of various densities on the surface. The composites exhibited improved photocatalytic activities toward the reduction of Cr(VI) and degradation of rhodamine B under visible light (λ > 420 nm), which were attributed to
  • visible light together with an accelerated separation and transfer of the photogenerated electron–hole pairs of the nanocomposites, which resulted in increased effective amounts of photogenerated carriers for the photocatalytic reactions. It was demonstrated that the photoinduced electrons dominated the
  • photocatalytic reduction of Cr(VI), while hydroxyl radicals and reactive holes contributed to the photocatalytic degradation of rhodamine B. Keywords: biomimetic synthesis; cellulose; nanoarchitectonics; nanocomposite; nanotubes; photocatalysis; pollutants; Introduction The direct emission of untreated
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • photocatalytic semiconductors. The local SPV is generally measured consecutively by Kelvin probe force microscopy (KPFM) in darkness and under illumination, in which thermal drift degrades spatial and energy resolutions. In this study, we propose the method of AC bias Kelvin probe force microscopy (AC-KPFM
  • . The tip was cleaned by Ar+ sputtering (0.8 keV, 5 × 10−7 Torr, 5 min) to remove the contaminants and the native oxide layer. We used a rutile TiO2(110) sample to demonstrate the AC-KPFM. TiO2 is one of the promising photocatalytic materials [38][39][40] and has been widely studied using AFM and KPFM
  • reactions (hours) [62][63][64]. Particularly for photocatalytic semiconductors, AC-KPFM would be an indispensable tool for detecting the fast SPV distribution related to charge redistribution (microseconds to milliseconds) because SPV measured with classical KFPM is attributed to both charge redistribution
PDF
Album
Full Research Paper
Published 25 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • enhances its photocatalytic activity, which becomes three times higher than that of the quasi-spherical brookite TiO2. The results demonstrated that the sodium-doped brookite NaxTi1−xO2 can be stable up to 500 °C. At 600°C, the sodium in the brookite precipitates in the form of Na2CO3, and above 700 °C
  • structure and produce microstructures such as the core–shell structure, local lattice distortion, interstitial atoms, and atomic vacancies, which are critical to its excellent photocatalytic activity. Keywords: brookite titanium dioxide; core–shell structure; photocatalytic activity; sodium doping; twins
  • increased due to its importance for photocatalytic application. Ohtani et al. reported that extra-fine brookite TiO2 exhibited good photocatalytic activity for redox reactions in aqueous propan-2-ol and silver sulfate solution [7]. Kobayashi et al. suggested that the photoactivity of brookite nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • combined with metal nanoparticles, resulting in enhanced photoactivity of Au-decorated ZnO nanocrystals for photoelectrochemical water splitting [9], improved photodetection performance of ZnO nanofibers decorated with Au NPs [10], or enhanced photocatalytic activity of ZnO doped with Au NPs [11]. Moreover
  • properties including a high refractive index, which can confine the excitation light in order to enhance the SERS effect, various types of tuneable morphologies that can be used in combination with noble metals, but also its biocompatibility, photocatalytic self-cleaning capability, and high chemical
  • milli-Q water to the freshly prepared Ag nanowire solution [55]. A higher photocatalytic activity was shown for the Ag–ZnO core–shell particles compared to ZnO alone under solar light irradiation. SERS applications of ZnO-based nanostructures SERS is a powerful technique with promising applications for
PDF
Album
Review
Published 27 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility
  • photocatalytic activity. Upon UV irradiation, the electrons in the valence band get excited to the conduction band, leading to the formation of electron–hole pairs and the generation of ROS. Subsequently, the generated holes (h+) convert water/hydroxide molecules to peroxide/hydroxyl radicals by oxidation. The
  • generated free electrons (e−) react with molecular oxygen to generate superoxide radicals by reduction. Several factors contribute to the photocatalytic performance of TiO2, such as the structural phase (anatase, brookite, or rutile), defects in the lattice, the degree of crystallinity, morphology
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been
  • 50% glycerol. 97% of the dye removal efficiency of the membrane was maintained even after five consecutive adsorption/desorption cycles [79]. Hou et al. added the photoactivity of TiO2 into a hybrid membrane of PVA, PAA, and carboxyl-functionalized GO to degrade organic dyes by photocatalytic
  • degradation. The membrane displayed an efficient photocatalytic capacity for MB, CR, and RhB [80]. Although TiO2 is abundant and inexpensive, it only converts to UV part of sunlight, which is only 5% of the solar energy. This makes the use of TiO2 impractical. To counter this drawback Liu and co-workers
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • received particular attention from the scientific community. The photocatalytic NOx oxidation will be an important contribution to mitigate climate change in the future. Existing review papers mainly focus on applying SnO2 materials for photocatalytic oxidation of pollutants in the water, while studies on
  • the decomposition of gas pollutants are still being developed. In addition, previous studies have shown that the photocatalytic activity regarding NOx decomposition of SnO2 and other materials depends on many factors, such as physical structure and band energies, surface and defect states, and
  • morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this
PDF
Album
Review
Published 21 Jan 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • (Cd2+) to form a three-dimensional crystal of Cys/Cd nanorods. Then, upon the introduction of Na2S, the Cys/Cd template mediates the mineralization of cadmium sulfide (CdS) into a layered CdS quantum dot structure, finally making a simple bionic daylight antenna with sustainable photocatalytic
  • alcohol dehydrogenase may be incorporated into Cys microspheres, resulting in hybrid microspheres with photocatalytic and biocatalytic activities. In addition, Cys/Zn microspheres were modified with CO32−-doped ZnS nanocrystals by a hydrothermal treatment, and then glutamic acid dehydrogenase was
PDF
Album
Review
Published 12 Oct 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • quaternary CuNiCoS4 nanocrystals. The first study by Thompson is on the synthesis of CuNiCoS4 thiospinels [13]. The second is a study on the synthesis and photocatalytic hydrogen evolution, which was performed by our group [8]. In this study, the optical characterization results of the CuNiCoS4 nanocrystals
PDF
Album
Full Research Paper
Published 02 Sep 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • to the human body or the environment caused by other materials such as lead. In addition, Gopal et al. [48] pointed out that boron exhibits diamagnetic properties in B-doped anatase TiO2 nanoparticles and showed photocatalytic activity in the visible-light range. Magnetic MNRs were applied to the
  • chemical field, and preparation and characterization of B–TiO2 photocatalytic particles were carried out by using these diamagnetic nanoparticles. The research on magnetic nanoparticles will expand the application range of MNRs and promote the common development of different fields. Other nanoparticles
PDF
Album
Review
Published 19 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • be easily tuned via structural design. In addition, they are of light weight (i.e., mainly composed of C, N, O, and S). To improve the photocatalytic performance of CPs and better understand the catalytic mechanisms, many strategies with respect to material design have been proposed. These include
  • tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D–A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor
  • units. The challenges and prospects associated with D–A polymer-based photocatalysts are described as well. Keywords: π-conjugated polymeric photocatalysts; donor–acceptor junctions; nanostructure semiconductors; photocatalytic hydrogen production; Introduction To date, fossil fuels still are the
PDF
Album
Review
Published 30 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • , Poland 10.3762/bjnano.12.38 Abstract Chlorine is found to be a suitable element for the modification of polymeric carbon nitride properties towards an efficient visible-light photocatalytic activity. In this study, chlorine-doped polymeric carbon nitride (Cl-PCN) has been examined as a photocatalyst in
  • the hydrogen evolution reaction. The following aspects were found to enhance the photocatalytic efficiency of Cl-PCN: (i) unique location of Cl atoms at the interlayers of PCN instead of on its π-conjugated planes, (ii) slight bandgap narrowing, (iii) lower recombination rate of the electron–hole
  • pairs, (iv) improved photogenerated charge transport and separation, and (v) higher reducing ability of the photogenerated electrons. The above factors affected the 4.4-fold enhancement of the photocatalytic efficiency in hydrogen evolution in comparison to the pristine catalyst. Keywords: chlorine
PDF
Album
Full Research Paper
Published 19 May 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture. Keywords: biological effects; Bombyx mori; nanomaterials; nanotechnology; sericulture; Introduction Nanomaterials have unique optical, electronic, and photocatalytic
PDF
Album
Review
Published 12 Feb 2021
Other Beilstein-Institut Open Science Activities