Search results

Search for "precipitation" in Full Text gives 277 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • solution containing the Al3+ ions had an acid pH value of 0.45 [1]. Obtaining boehmite (γ-AlO(OH)) The pH value was modified to obtain the boehmite phase by adding sodium hydroxide (NaOH) until pH 8. After precipitation, the oxide hydroxide was vacuum filtered and oven-dried at 70 °C [1][13]. Boehmite
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • treat contaminated water and wastewater, including adsorption, bioremediation, precipitation, electrocoagulation, filtration, membrane separation, flocculation, centrifugation, advanced oxidation processes based on photocatalysis, and chemical coagulation [4][5][6][7][8][9][10][11]. Each of these
  • precipitation, in particular, are believed to be ineffective [4][11]. As a result of the non-biodegradable and persistent nature of the majority of organic contaminants, some physicochemical treatment techniques, such as adsorption, are ineffective in removing them from water resources [11]. Because of their
  • -precipitation, and aerosol-spraying) have been widely used for the synthesis of various nanostructured materials due to their low cost, low energy requirements, and ease of control of the solution parameters to meet the growing demand for efficient photocatalysts that can be produced on a large industrial scale
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • silica precipitation in vitro [29][30][31][32]. The catalytic activity of these proteins is thought to be similar to the serine–histidine–aspartic acid (SHD) catalytic triad [33][34]. In this model, a hydrogen bond between serine and histidine increases the nucleophilicity of serine. Aspartic acid
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • makes them ideal candidates for magnetic-assisted targeted drug delivery [12]. Nanoscale magnetite can be obtained through well-known synthesis routes, such as hydrothermal synthesis, thermal decomposition, or co-precipitation [10][11]. Each of these synthetic approaches has certain advantages and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • one hand, it induces antibacterial activity, and, on the other hand, it promotes the formation and mineralization of bone tissue [19][32]. The HA-BG composites investigated in this work contained two types of HA, obtained either by the sol–gel method (HAG) or by the precipitation method (HAP). It was
  • composites The composite samples were obtained from hydroxyapatite prepared by a precipitation method (HAP) or by a sol–gel method (HAG) combined with a bioglass of definite composition. For the preparation of HAP powder we used the method described in a previous work [35] with small modifications, according
  • the incipient stage of calcium phosphate precipitation after 3 days of soaking (Figure 7a). In contrast, HAP-based composites did not exhibit any precipitate at the surface after 3 days of soaking (Figure 7b). This can be the result of the more porous structure of HAG-based composites (Figure 4a) and
PDF
Full Research Paper
Published 12 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • produced in the form of powders, fibers, and films by using various processing techniques including wet chemical synthesis, such as the sol–gel method [33][34][35], precipitation [36], hydrothermal [37][38][39] and spray pyrolysis [40][41]. Also, solid-state synthesis methods, such as mechanical synthesis
PDF
Album
Full Research Paper
Published 07 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • (molar ratio of DSPE-DTPA/Au3+/BDP = 2:1:1), the mixture was vortexed for 30 s and further ultrasonicated for 10 min at 25 °C. The acquired green dispersion, designated as AB-LNPs, showed excellent stability with no precipitation after centrifugation. Method B is mixing BDP with preformed LNPs followed
PDF
Album
Full Research Paper
Published 02 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • . The sample calcinated at 750 °C revealed the highest photocatalytic performance. Hamza et al. fabricated Bi2(CrO4)3 nanoparticles via a facile precipitation technique [59]. The photocatalytic activity of the Bi2(CrO4)3 nanoparticles was studied under UV, AM 1.5, and visible-light irradiation, and
  • plasmonic photocatalyst. Nanospheres, nanorods, and nanosheets can be synthesized using various techniques. Hydrothermal calcination, template synthesis, precipitation, reverse micro-emulsion, sonochemical procedures, and microwave methods are typical techniques for fabricating Bi-based nanostructures [77
PDF
Album
Review
Published 11 Nov 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • , osteoblasts generate a membrane that includes alkaline phosphatase, which cleaves phosphatase groups and causes calcium and phosphate precipitation, resulting in the formation of natural bone minerals with a ratio of 1.67 [27]. Osteoblasts have been predominantly derived from mesenchymal stem cells, which
PDF
Review
Published 29 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • )3 precipitation, which is called iron sludge. It might decrease the activity and lead to the termination of the Fenton reaction. Second, ferric ions might easily cause complicated chain reactions with organic matters, resulting in the formation of Fe3+ complexes or other intermediate products. Such
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • important abiotic factors affecting the vegetation in Antarctica, is provided mainly by atmospheric water vapor and local melt supplies from fallen snow, drift snow, and permafrost, whereas stream runoff is extremely rare [28]. Precipitation in the Maritime Antarctica ranges from 100 mm per year (Margarita
PDF
Album
Full Research Paper
Published 22 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • primary amine functions, and, therefore, it cannot be crosslinked into the particle matrix by glutaraldehyde. FITC-dextran 70 kDa was loaded into nanoparticles by incorporation during precipitation and subsequent crosslinking of the nanoparticles. The fluorescence intensity was measured after enzymatic
PDF
Album
Full Research Paper
Published 16 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • the preparation of berberine (BBR) in nanoformulation to enhance its solubility and increase its antibacterial effectiveness against hospital-acquired infections. BBR nanoparticles (BBR NPs) were formed by antisolvent precipitation (ASP) using glycerol as a safe organic solvent. UV–vis absorption
  • bacterial cells and severely damaged the cell walls. Therefore, BBR NPs prepared by ASP appear to be a potential candidate for the treatment of bacterial pathogens. Keywords: antibacterial activity; antisolvent precipitation (ASP); berberine nanoparticles (BBR NPs); glycerol; solubility; Introduction
  • ], particle size reduction [25], and encapsulation in nanoscale delivery systems [11]. Nanoscale BBR crystals can be formed using top-down technologies (ball mills, high-pressure homogenizers, microfluidic technology, and spray drying) or bottom-up technologies (evaporative precipitation of nanosuspension
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • analysis, 28–30 wt % solution of NH3 in water, Acros Organics). The preparation of the MNPs was performed by reverse precipitation, in which an aqueous solution (50 mL) of FeSO4 with the surfactant CTAB (2:1, mass ratio) was slowly dripped into a 50 mL basic solution of NaOH and NH4OH. The solution turned
  • advancements in medical fields (hyperthermia and drug delivery), permanent magnet industry, sensoristics, and spintronics. The program has been tested not only on simulated tomograms but also on tomograms obtained on real-life systems of magnetite MNPs, obtained in-house by co-precipitation methods. Starting
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • methods used for obtaining ZnO nanoparticles, solution synthesis methods such as sol–gel [22], chemical precipitation [23], polyol [24], and solvothermal [25] methods, are inexpensive, consume little energy, allow for a facile control of physical characteristics and morphology of the nanoparticles, offer
  • good reproducibility, and are usually effective for large scale production. The chemical precipitation technique has gained increased attention due to its simplicity and efficiency for obtaining nanosized ZnO structures with various morphologies, such as nanoparticles, nanorods, nanoneedles, and
  • of this synthesis method is that through the co-precipitation reaction a large amount of nanoparticles can be easily obtained. Moreover, the chemical precipitation method allows for rigorous control over nuclear and particle growth in solution. The polyol method offers good control of the shape and
PDF
Album
Review
Published 27 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • explains why it is impossible to obtain the developed nanostructured CuO surface at room temperature. However, after increasing the concentration of NaOH to 10–15 M, the dissolution–secondary precipitation mechanism takes effect: Cu(OH)2 reacts with OH− ions to form the complex ion [Cu(OH)4]2− (Equation 2
  • short time. The particles begin to agglomerate in order to minimize the total surface energy, forming spherical seeds, which, according to the mechanism of dissolution–secondary precipitation [78][80], overgrow with CuO petals, thereby forming 3D structures in solution. Then, under the influence of
PDF
Album
Full Research Paper
Published 03 May 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • use due to precipitation. The freshly prepared MZG nanoparticles were aged for 24 h at room temperature and placed in the dark. As-prepared nanoparticles were concentrated, purified by centrifugation, and used for further experiments. Quantitative analysis of MZG The precipitates of MZG were collected
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • protein structure (sometimes fully denaturing the protein) and to cause subsequent precipitation of protein aggregates [18]. Self-assembly strategies also provide access to a variety of structurally diverse [19] protein nanoparticles. With the advent of in silico design and subsequent production of de
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • experiences, thus, a higher plowing resistance. The outer layer grows by precipitation of metal hydrates, which are formed when dissolved metal ions diffuse towards the solution. This growth of the outer layer involves the three physicochemical processes depicted in Figure 5d, which have been invoked to
  • layer does not grow significantly in NaCl solution, although the adhesion data indicated stronger dissolution than in phosphate buffer. It has been reported that phosphate ions interact strongly and promote the precipitation of dissolved metal hydrates due to the formation of insoluble metal phosphate
  • species [28][29]. Such an accumulation of hydrates does not proceed in NaCl solution, and we conclude that the formation of metal hydrates is in equilibrium with their diffusion into the solution, or that the existing outer layer prevents the precipitation of further hydrates. The friction coefficient for
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • possible applications for these microparticles. For example, enzyme particles have been produced to be used as microreactors or biosensors [4]. This method can also represent a promising approach to the production of drug carriers by the precipitation of favorable biopolymers and corresponding surface
  • the CCD method after precipitation, as well as after cross-linking, dissolution, and final washing steps are shown in Figure 1. The zeta potential of HbMP in phosphate-buffered saline (PBS), pH 7.4, was −8.51 ± 0.9 mV. The zeta potential in PBS, pH 7.0, of E. coli was −16 mV, that of S. epidermidis
  • sample suspension (before centrifugation) as well as in the supernatant (after centrifugation) was examined (Figure 7). After precipitation, most of the original bacterial count of both bacterial strains was still present in the suspension. In the experiment with E. coli, a small proportion was
PDF
Album
Full Research Paper
Published 24 Jan 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • reasonable choice for DMS alloys with chromium for the best compatibility with silicon-based industry. However, precipitation of transition metals is the main obstacle; but in low-dimensional semiconductors the precipitation is significantly reduced. Therefore, CrGe nanowires (NWs) were prepared to study
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • synthesized by co-precipitation of ferrous and ferric chloride salts [47]. An aqueous solution of Fe2+:Fe3+, taken in the molar ratio of 1:2, was stirred at 700 rpm with nitrogen purging, for 10 min, at 80 °C. The reduction to Fe3O4 was carried out with the addition of 15 mL of 25% ammonia solution. Stirring
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • centrifugation at 50–2500g for 5–20 min (depending on the reaction time; for details, see Table S1 in Supporting Information File 1). The precipitate was redispersed in 20 mL HAS [22]. Precipitation and centrifugation were repeated twice. For the second redispersion step, 20 mL hexane instead of HAS was used
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • and can be distinguished in aqueous and organic solvent routes [57]. The so-called Weimarn sols are produced by dissolution of sulfur powder in ethanol or acetone-based solutions and the subsequent precipitation of sub-micrometer-size particles in water [57]. The so-called Raffo sols are obtained by a
  • consisting of choline chloride and Na2S2O3 [61]. This cathode material retained 900 mAh·g−1 over 100 cycles. A modified precipitation method for S NPs is flash nanoprecipitation using a confined impingement jet mixer, in which Na2S2O3, H2O, HCl, and a stabilizing copolymer (polyvinylpyrrolidone, PVP) form
PDF
Album
Review
Published 09 Sep 2021
Other Beilstein-Institut Open Science Activities