Search results

Search for "protein adsorption" in Full Text gives 46 result(s) in Beilstein Journal of Nanotechnology.

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • towards a better handling of fully active enzyme preparations. A broad range of different immobilization methods is applied, ranging from protein adsorption, covalent coupling, entrapment and encapsulation to intermolecular cross-linking with filler components, specific high-affinity docking and
PDF
Album
Review
Published 25 Apr 2016

Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

  • Tuan Anh Pham,
  • Andreas Schreiber,
  • Elena V. Sturm (née Rosseeva),
  • Stefan Schiller and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2016, 7, 351–363, doi:10.3762/bjnano.7.32

Graphical Abstract
  • networks. As a control experiment, an Au NP sample with only 0.6 equiv Hcp1_cys3 was prepared and shows short chains with 2–10 Au NPs and also free Au NPs (Figure S9, Supporting Information File 1). Similar statistical protein adsorption on one NP is also observed for the Fe3O4 Hcp1_cys3 fiber, leading to
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • AgNPs and the negatively charged BSA led to protein adsorption, but questions remained about why the repulsive forces between the negatively charged NPs and BSA did not prevent protein adsorption. Besides a negatively charged surface at physiological pH, the structure of BSA is also characterized by
PDF
Album
Full Research Paper
Published 15 Feb 2016

Nanostructured surfaces by supramolecular self-assembly of linear oligosilsesquioxanes with biocompatible side groups

  • Maria Nowacka,
  • Anna Kowalewska and
  • Tomasz Makowski

Beilstein J. Nanotechnol. 2015, 6, 2377–2387, doi:10.3762/bjnano.6.244

Graphical Abstract
  • underlying matrix. For example, surfaces carrying COOH groups were applied for studies on the effect of surface wettability on protein adsorption and adhesion of human umbilical vein endothelial cells (HUVECs) and HeLa cells [3], human fibroblasts [14], human mesenchymal stem cells [15][22], corneal
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • of HA enhanced hydrophilicity and serum protein adsorption, and as a result, this increased pre-osteoblast cell attachment, spreading, and proliferation after four days of culture. Different technical routes have been explored for the synthesis of HA NPs, including mechanochemical synthesis [10
PDF
Album
Full Research Paper
Published 25 Nov 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • desired properties, but are subsequently replaced by other ligands, e.g., to alter the solubility or avoid adverse effects related to toxic ligands [13][14][15][16]. Protein adsorption can well lead to the exchange of small monomer-type ligands on NP surfaces under physiological conditions while other
  • over many different atomic surface sites, hence the individual influence of single surface sites is reduced. The extent to which this effect governs the overall behavior observed for protein adsorption to NP surfaces remains unknown, largely due to elusive characteristics of the NP surface under
  • physiological conditions on an atomic scale. Hydrophilic and/or hydrophobic properties of NPs are also difficult to assess on an atomic scale under the chemically complex conditions of physiological media. These properties can also be critically affected by protein adsorption, leading to a situation in which
PDF
Album
Review
Published 30 Mar 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • transferrin receptor binding on the surface of cells [23]. It should be noted that most of the mentioned work was performed in in vitro experiments using partly also cell culture models. To date, much less information is available on the consequences of protein adsorption on nanoparticles in vivo. This is not
  • protein adsorption, however, seems not to be the right strategy because this would also diminish the desired specific binding to a cell surface receptor [33]. In the in vitro experiments, we showed that transferrin and also albumin can bind to our polymer coated-SPIO as well as to some PEGylated variants
PDF
Album
Full Research Paper
Published 06 Jan 2015

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • on whether internalization was analyzed with the cells in buffer or in medium containing human serum, so that a protein adsorption layer will form on the NPs. These data emphasize that studies of NP-cell interactions on cell line models may not be straightforwardly transferable to the situation in
PDF
Album
Full Research Paper
Published 11 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • proteins involved in coagulation as compared to plasma was measured. The amphiphilic Janus character is reflected in the specific protein adsorption pattern. It shows a distinct enrichment of lipoproteins and other plasma components to the isotropic analogues confirming the observation of preferentially
  • binding of apolipoproteins and serum albumin to hydrophobic nanoparticles by Cedervall and co-workers [115]. Interestingly, there is a significant and unexpected difference in the composition of the protein corona of isotropic silica encapsulated MnO and Fe3O4 nanoparticles. By studying the protein
  • adsorption to silica particles of varying sizes and surface functionalization, it could be shown that small changes also are sufficient to drastically change to the affinity for peptides [116][117][118]. As a consequence, it is possible that slight structural differences of the silica shell of MnO and Fe3O4
PDF
Album
Review
Published 05 Dec 2014

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

  • Pauline Maffre,
  • Stefan Brandholt,
  • Karin Nienhaus,
  • Li Shang,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2036–2047, doi:10.3762/bjnano.5.212

Graphical Abstract
  • ]. Protein adsorption onto NPs is governed by chemical kinetics. Thus, the initial binding events involve predominantly the more abundant and mobile proteins. If these proteins do not bind too tightly (so that their residence times on the NP do not exceed the relevant time scales), they may be subsequently
  • adsorption and desorption can vary widely. A NP covered by a protein adsorption layer is disguised and, therefore, the initial encounter between the NP and a cell, which may trigger the endocytosis machinery by activating specific receptors [17], is governed by the properties of the protein layer rather than
  • protein corona at the molecular level [14][21][22][23][24][25][26][27][28][29][30][31][32][33][34]. In a typical protein adsorption experiment, NPs are incubated with a mixture of proteins, for example, with blood plasma containing thousands of different proteins [35][36][37]. These proteins all compete
PDF
Album
Full Research Paper
Published 07 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in
  • affinities were one order of magnitude lower when PVP coatings were applied to the nanoparticles prior to protein adsorption, irrespective of the metallic core (silver or gold). This is a good indication of how PVP can shield the metallic surface of the nanoparticle and shows how the coating mediates the
  • ][46][47]. This influences their dispersability in biological media, as we have shown for this particular kind of silver nanoparticles, and also their cytotoxicity [48]. This effect is, of course, not limited to silver nanoparticles [45][49][50][51][52][53]. The quantitative description of protein
PDF
Album
Review
Published 03 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • anticancer drugs and preserving their activity under biological conditions [81][82][83][84]. The affinity of NDs for protein adsorption has been finally utilised to separate recombinant proteins from Escherichia coli [85], resulting not only in a radically faster process than the commonly used purification
PDF
Album
Correction
Review
Published 23 Oct 2014

Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

  • Claudia Strobel,
  • Martin Förster and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2014, 5, 1795–1807, doi:10.3762/bjnano.5.190

Graphical Abstract
  • factor (VEGF) of HUVEC exposed to CeO2 nanoparticles for 24 h (Figure 5). In general, the release of these proteins was lowest after treatment with the small-sized CeO2 nanoparticles (sample #A) compared to their large-sized counterparts (sample #B). This could be caused, at least in part, by protein
  • adsorption on the nanoparticle surface, which would be higher for the small-sized nanoparticles as a result of a higher surface–volume relationship [46]. This could ultimately lead to a distinct impact on cell metabolism and cell–cell interactions. Both nanoparticle samples showed the tendency of an increase
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • the protein corona. Nevertheless, the use of this data for size determination would result in arbitrary results due to the fact that the surface properties are altered by protein adsorption. Additionally, a broad fraction was detected eluting at later elution volumes. Since in AF-FFF a sample is
  • stabilization effect induced by protein adsorption was previously reported [82]. We assume that the stabilization of POS particles in the presence of proteins is driven by a similar stabilization mechanism. Summary of results SiO2-based nanomaterials were characterized with respect to their size under non
PDF
Album
Full Research Paper
Published 15 Oct 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • of serum protein samples without AuNP proved to show no proteins (negative control data not shown). In a next step the role of the AuNP surface area available for protein adsorption was studied since the same mass of smaller AuNP have a larger surface area compared to large AuNP. Different
PDF
Album
Review
Published 02 Oct 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • help to analytically quantify protein adsorption, such as by determining binding constants [30][136], the biological reality is more complex. Serum-containing cell culture media comprise hundreds of different proteins. To make it worse to analyze, protein adsorption is also a dynamic process. Thus
PDF
Album
Review
Published 09 Sep 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • for instance after exposure of nanoparticles to blood plasma and are the result of protein adsorption to the particle surface [66]. These coronas largely define the biological identity of the particle [67][68]. They have also been reported to reduce the cytotoxicity of nanomaterials [69][70
PDF
Album
Full Research Paper
Published 21 May 2014

New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities

  • Thi Dieu Hang Nguyen,
  • François-Xavier Perrin and
  • Dinh Lam Nguyen

Beilstein J. Nanotechnol. 2013, 4, 671–677, doi:10.3762/bjnano.4.75

Graphical Abstract
  • reducing bio-adhesion, i.e., protein adsorption, or the adhesion of bacteria and cells. The environmentally friendly coatings obtained by the grafting of PEO onto PSZ are a promising way to prevent the deposition of marine fouling materials onto the hulls of ships [6]. Several factors have been
PDF
Album
Full Research Paper
Published 21 Oct 2013
Graphical Abstract
  • , nanostructured thin films on substrates with tunable nanostructure and surface morphology are of great importance for various applications, such as photoelectronics [1], high-efficiency sensing and bioanalysis [2][3], protein adsorption [4], cell growth [5], surface wettability control [6] and liquid
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • correlation spectroscopy; human serum albumin; nanoparticle; protein adsorption; Introduction Recent years have seen enormous advances in the field of nanotechnology. A huge variety of nanoparticles (NPs), defined as objects with all three spatial dimensions in the range of 1–100 nm, has been developed, with
  • understand the structural and dynamic properties of the protein corona at the molecular level. Recently, we have used quantitative fluorescence microscopy, especially fluorescence correlation spectroscopy (FCS), to study protein adsorption of human serum albumin (HSA) on polymer-coated FePt NPs with an
  • protein adsorption onto the NP surfaces can be measured via an increase of τD. Knowledge of the molecule detection function (MDF), i.e., the probability to detect a fluorescence photon from a molecule at a given position in the sample volume, is key to the precise quantitative analysis of an FCS
PDF
Album
Full Research Paper
Published 12 Jul 2011

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • highly effective at reducing protein adsorption from blood [3] thereby improving the biocompatibility of biomedical implants [4]. The protein-resistant properties of PEG have also been applied to reduce membrane fouling in ultrafiltration membranes for water purification [5]. It is important to develop a
  • conjunction with protein adsorption studies, this may have specific applications as integrated (and miniaturizable) process sensors. More generally, this particular capability of microcantilever sensors may provide new insight into the biochemical and nanomechanical properties of biopolymers in vitro. For
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities