Search results

Search for "self assembly" in Full Text gives 323 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • subcellular targeting, were synthesized by click coupling reactions or arranged by self-assembly and co-assembly of block copolymers. These carriers may challenge different barriers after bioresponsive cleavage of the above functionalities. One recently published example involves a micellar structure composed
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • , this method is less affected by drug resistance and side-effects. A hydrogel was prepared by using both the electrostatic self-assembly between graphene oxide and a quaternized polymer and the formation of a pseudopolyrotaxane between α-CyD and poly(ethylene glycol) monomethyl ether (many α-CyD
PDF
Album
Review
Published 09 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • areas consist of more Si and Ni in 5Au15Ni and 10Au10Ni but less Ni in 15Au5Ni, which has the lowest Ni concentration (Supporting Information File 1, Figure S5). The line structures show epitaxial self-assembly growth and their EDS results show a comparatively high content of Ni apart from Si, which may
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric
  • nanoparticles. Keywords: assembly; chain stopper; patchy nanoparticles; patch-to-particle size ratio; self-assembly; Introduction Colloidal engineering has become an enormous research endeavor, with a major focus placed on creating increasingly scalable smart particles, such that desired structures can be
  • by liquid bridging [23], and into a series of structures under an AC electric field [24]. The linear self-assembly of patchy gold nanorods tethered with hydrophobic polymer chains at both ends can be triggered by solvophobic attractions induced by a change in solvent quality [25]. By using post
PDF
Album
Full Research Paper
Published 06 Jan 2023

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • ethanol solvent. The colloidal particles in the suspension can self-assemble into two- and three-dimensional colloidal crystals of various shapes under certain conditions. In the process of self-assembly, such fibrous colloidal crystals are small in size and usually micrometer in length due to the weak
  • fibers. Many factors influence particle self-assembly and crack extension. Therefore, the controllability of colloidal fiber morphology can be achieved by changing the experimental conditions. When the colloidal particles are self-assembled into colloidal films, regular parallel-like crack patterns are
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • are a type of simple natural molecule which is widely applied for the specific recognition of chiral analytes in QCM. The molecular layers of amino acids may be immobilized on the surface of electrodes by chemical modification and self-assembly. Mandelic acid (MA) is an important chiral intermediate
  • modified QCM sensors [29]. The sensor layers were constructed by self-assembly of ʟ(ᴅ)-Val monolayers or comb-teeth-type grafted polymer brushes with ʟ(ᴅ)-Val. According to the frequency shifts upon bovine serum albumin (BSA) adsorption, ʟ-Val-modified sensors were shown to have a stronger binding to BSA
  • volatile organic compounds (VOCs) with a remarkable degree of selectivity, which may promote the development of electronic nose systems for chiral analytes. Metal–organic frameworks. Metal–organic frameworks (MOFs) are unique porous crystalline materials fabricated by the self-assembly of metal ions or
PDF
Album
Review
Published 27 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • composite using a self-assembly method. The osteoblasts obtained from newborn rat calvaria bones were subjected to biological tests. Cells were viable and proliferating with the produced composite material. In addition, there was an increase in alkaline phosphatase activity. Aside from that, exceptional
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • efficient photocatalysts for CTC degradation. Metal–organic frameworks (MOFs) are a kind of micro- or mesoporous materials established by the self-assembly of organic linkers and metal-cluster or metal-ion nodes [19]. The MOF materials possess large surface areas, high pore volume, tunability, uniform
  • photocatalyst under UV light irradiation [30]. So far, a large number of MOFs have been shown to exhibit photocatalytic activity in H2 production, organic pollutant degradation, and Cr(VI) and CO2 reduction [26][27][31][32][33]. Among MOF catalysts, MIL101(Fe) is a cage-like structure formed by self-assembly of
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • composition play significant roles. Here, the ability of self-assembly of wax after isolation from the leaves was used to develop a small-scale wax-coated artificial leaf surface with the chemical composition and wettability of wheat (Triticum aestivum) leaves. By thermal evaporation of extracted plant waxes
  • extracted plant waxes has shown that the diverse microstructures of epicuticular waxes arise by self-assembly and that the micromorphology of wax structures is largely determined by their chemical composition [15][17][18][19][20][21][22][23]. Platelets, which mostly have a high primary alcohol content, are
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • coatings, recombinant spider silk proteins based on eADF4 can be processed into 3D scaffolds, such as foams or hydrogels due to their self-assembly properties [169][171][172][173][174]. Balb 3T3 fibroblasts adhered to porous foams made of eADF4(C16)-RGD and showed spreading and cell elongation along the
PDF
Album
Review
Published 08 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
PDF
Album
Full Research Paper
Published 30 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • through self-assembly [130]. The assembly process is usually driven by thermodynamics to form entropy-favored periodic arrangements. The periodically assembled monocrystalline coordination polymers have unique features. For instance, the assembly of polyhedral coordination polymers can form a more complex
  • . Figure 6 was adapted from [134] (© 2020 S. Wang et al., published by Springer Nature, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0). a) Schematic illustration of the self-assembly of ZIF-8 particles via spray drying
PDF
Album
Review
Published 12 Aug 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • on the tips of the nanorods by photodeposition or galvanic reduction [47][48]. Another facile method included layer-by-layer self-assembly deposition of chemically synthesized Au NPs, ZnO, and analyte molecules and resulted in dispersedly distributed ZnO particles onto a Au NP monolayer surface [49
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • general concept of self-assembly allows for the preparation of SAMs from the liquid or gas phase. Highly ordered TPT SAMs spontaneously form on Au(111) due to the formation of bonds between sulfur and gold atoms, which is accompanied by van der Waals interactions between the aromatic rings. The TPT SAMs
  • in a less dense but more ordered structure over a large area with very few defects. During the self-assembly process, gold adatoms are ejected from the surface layer due to the relaxation of the herringbone reconstruction [68]. Several gold adatom islands, which would build up if the density of
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • different characteristics and kinds of behavior of compounds on submicrometer and nanometer scales and resulted in the development of new methods such as electrospinning, self-assembly, phase separation, nano-imprinting, and photolithography for the generation of new biomaterials with improved properties
  • candidates for biomedical applications (Table 1). Collagen fibril and fibrous proteins are naturally occurring nanofibers whose fiber diameters range between 50 and 150 nm, depending on tissue type and function. Various techniques to fabricate nanofibers include 3D printing, molecular self-assembly
PDF
Album
Review
Published 11 Apr 2022

Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein

  • Ismael Abu-Baker and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2022, 13, 355–362, doi:10.3762/bjnano.13.30

Graphical Abstract
  • Ismael Abu-Baker Amy Szuchmacher Blum Department of Chemistry, McGill University, Montréal, Québec, Canada 10.3762/bjnano.13.30 Abstract The self-assembly of the tobacco mosaic virus coat protein is significantly altered in alcohol–water mixtures. Alcohol cosolvents stabilize the disk aggregate
  • alcohol having the strongest effect and methanol the weakest. We discuss several effects that may contribute to preventing the protein–protein interactions between disks that are necessary to form helical rods. Keywords: alcohol; hydrophobic effect; protein assembly; self-assembly; tobacco mosaic virus
  • been the main method employed to control TMV-cp self-assembly, with numerous mutants designed to stabilize either the disk or rod forms [24][25][26][27]. Herein we describe a simple cosolvent-based method to modify the assembly characteristics of TMV-cp. The use of dipolar molecules to control the
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • interaction (Myr/GSH = 1:2) [32][33][34]. The nanoparticles were formed by coordination self-assembly of Zn2+, Myr, and GSH (Figure 1a). They were expected to show good antioxidant activity to protect cells from the ROS-induced damage (Figure 1b). The transmission electron microscopy (TEM) image in Figure 2a
  • component co-assembles with Myr and GSH. Fourier-transform infrared (FTIR) spectra were used to further confirm the self-assembly of the MZG nanoparticles. In Figure 2d, the two bands at 2522 cm−1 and 3350 cm−1 were assigned to the mercapto group (–SH) and the stretching vibration of the amino group (–NH2
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • ]. Nanoparticles made of proteins [6] hold significant promise in this respect and different methods have been adopted to fabricate protein-based nanoparticles including nab technology [1], desolvation methods [2], and self-assembly [3]. The protein human albumin is a natural carrier of endogenous hydrophobic
  • protein structure (sometimes fully denaturing the protein) and to cause subsequent precipitation of protein aggregates [18]. Self-assembly strategies also provide access to a variety of structurally diverse [19] protein nanoparticles. With the advent of in silico design and subsequent production of de
  • novo protein nanoparticle systems, the number of specific protein building blocks that can be designed for self-assembly strategies has increased in recent years. If a protein system can successfully be designed, these synthetic proteins allow for tunable functionality and/or stability profiles [19
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • production starts from bulk materials that leach out systematically, leading to the generation of NPs. The starting material can be reduced in size using either a physical or a chemical route. On the other hand, the “bottom-up” approach, or self-assembly, refers to building up a structure atom-by-atom or
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • by one with an STM tip in an one-dimensional fashion on an s-wave superconductor [10], this strategy has been primarily postponed in favor of self-assembly processes on Pb(110) surfaces [13][14][15][36]. Only recently, the successful manipulation of tens of Fe atoms has been reported on
PDF
Album
Letter
Published 03 Jan 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • . However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled
  • nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost
  • acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino
PDF
Album
Review
Published 12 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • physical and chemical impregnation, mechanical mixing and self-assembly. Straightforward approaches are sulfur melt and vapor impregnation of suitable matrices. These routes require heating to temperatures above the melting (115 °C) and boiling (446 °C) point of sulfur, respectively. While the former
PDF
Album
Review
Published 09 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • layer; molecular self-assembly; scanning probe microscopy; surface science; Over the past two decades, organic molecules adsorbed on atomically defined metal surfaces have been intensively studied to obtain an in-depth understanding of their self-assembly behavior, on-surface reactivity, as well as
  • space. Molecular adsorption and self-assembly are significantly altered compared to metals due to an often weak interaction between organics and bulk insulators. In contrast to face-on adsorption on metals, a tilted and edge-on adsorption becomes possible for planar aromatic molecules on bulk insulators
  • due to the lattice mismatch between 2D material and its substrate might serve as structural templates for molecular adsorption and self-assembly [79][80][81][82]. The electronic decoupling depends on the electronic properties of the 2D materials as they can be insulators, semiconductors, semimetals
PDF
Editorial
Published 23 Aug 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • that ß-diketone tubules are formed by self-assembly and confirmed that ß-diketone is the shape-determining component for this type of tubules. Keywords: ß-diketone tubules; eucalyptus; plant wax; recrystallization; self-assembly; Introduction The plant cuticle, which is the largest biological
  • morphologies are formed by a self-assembly process. On artificial surfaces, waxes recrystallize in three-dimensional structures with similar morphology and related properties as on plant surfaces [14]. Additionally, recrystallization of isolated wax components revealed that usually the main compounds determine
  • AFM images of real-time investigation of wax recrystallization on HOPG were captured 10 to 13 min after the evaporation of the solvent. The AFM examination of wax self-assembly on HOPG showed platelets (Figure 3) as seen in SEM analysis. In AFM micrographs, two types of platelets with varying sizes
PDF
Album
Full Research Paper
Published 20 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
PDF
Album
Review
Published 13 Aug 2021
Other Beilstein-Institut Open Science Activities