Search results

Search for "silica nanoparticles" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • viability (Figure 8 and Table 1). Interestingly, when cisplatin was loaded into CuFe2O4-coated silica nanoparticles (group E), it was still able to significantly reduce the cell viability in a dose dependent manner. At the highest concentration used (0.5 mg/mL), cisplatin/CuFe2O4/HYPS nanoparticles resulted
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • double oxides” in the presence of diverse species, e.g., silica nanoparticles [32]. Nanoarchitectonic materials involving the growth of LDH nanoparticles in the presence of fibrous clay silicates were patented several years ago [33]. Direct co-assembly of already formed particles of each component does
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • different solvents (ethanol, butanol, DMSO). DSC thermograms (left) and XRD diffractograms (right) for selected silica nanoparticles, all loaded using ethanol as the solvent for rutin, showing curves with highest amorphous loading. For 72 FP (10 nm pores) the curves obtained with the overloaded system (25
PDF
Album
Full Research Paper
Published 08 Aug 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • systematically lower values obtained during the AFM height measurements [23]. Investigation performed on silica nanoparticles over the whole nanoscale range In order to further investigate the discrepancy observed between AFM and SEM measurements, various nanosilica populations were measured with mean sizes
  • . Measurements were performed using AFM and SEM on the same set of 257 PSL NPs. Concerning SEM, the imaging parameters detailed in section “Investigation performed on silica nanoparticles over the whole nanoscale range” have been used. The comparison of size measurements of FD304 NPs and PSL NPs using both
  • PSL NPs. With regard to the values of DFmin and DFmax the linear fits follow the equations DFmin = 1.05·HAFM + 0.29 and DFmax = 1.05·HAFM + 3.37 for silica nanoparticles. This indicates that, on average, a discrepancy of 3 nm is observed between DFmin and DFmax. Moreover, this discrepancy is larger
PDF
Album
Full Research Paper
Published 26 Jul 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • are foreign objects, careful evaluation of their toxicological and functional aspects prior to medical application is imperative. In this study, we aimed to determine the effects of gold and polymer-coated silica nanoparticles used in laser tissue soldering on brain endothelial cells and the blood
PDF
Album
Full Research Paper
Published 25 Apr 2019

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

  • Imène Reghioua,
  • Mattia Fanetti,
  • Sylvain Girard,
  • Diego Di Francesca,
  • Simonpietro Agnello,
  • Layla Martin-Samos,
  • Marco Cannas,
  • Matjaz Valant,
  • Melanie Raine,
  • Marc Gaillardin,
  • Nicolas Richard,
  • Philippe Paillet,
  • Aziz Boukenter,
  • Youcef Ouerdane and
  • Antonino Alessi

Beilstein J. Nanotechnol. 2019, 10, 211–221, doi:10.3762/bjnano.10.19

Graphical Abstract
  • , F-91297 Arpajon, France 10.3762/bjnano.10.19 Abstract We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular
  • , pure silica nanoparticles were produced using a laser pulse energy of 400 mJ on pure silica, whereas Ge-doped nanoparticles were obtained using 33 and 165 mJ per pulse on germanosilicate glass. The difference in the required energy is attributed to the Ge doping, which modifies the optical properties
  • be detected in pure silica nanoparticles, evidencing the positive impact of Ge for the development of intrinsically emitting nanoparticles. Transmission electron microscope (TEM) data suggested that the Ge-doped silica nanoparticles are amorphous. SEM and TEM data evidenced that the produced
PDF
Album
Full Research Paper
Published 16 Jan 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • Information File 1). Hence, we could treat the system as a system with two different electron densities (silica NPs and solvent matrix). However, because our silica nanoparticles were smaller (ca. 5 nm) compared to silica NPs in previous scattering studies (ca. 20 nm) on silica–protein composite formation [16
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • there [15]. These nanocapsules were anchored on the surface of mesoporous silica nanoparticles (MSN) coated with a lipid bilayer (protocells) enhancing their penetration into 3D tumoral tissue models, which yielded a significant enhancement of the therapeutic efficacy of these nanodevices (Figure 1) [16
PDF
Album
Review
Published 14 Jan 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • remain at the bottom of the dimples after the dissolution stage and can be specifically chemically modified providing both enthalpic and entropic characteristics to the patches [20][21]. Here we report the use of these patchy silica nanoparticles with two or four dimples as sp- and sp3-like colloidal
  • density of 20 functions per square nanometer, into the suspension of the as-prepared silica nanoparticles. The mixture was stirred at room temperature for 12 h to promote covalent bonding. The particle suspension was purified by three cycles of centrifugation/redispersion (10,000g; 20 min) in absolute
  • carboxylic acid groups, (b) zeta potential as a function of pH value, and (c) DRIFT spectra of bare (purple curve), aminated (orange curve) and carboxylated (green curve) silica particles; d) photograph of dimpled silica nanoparticles suspension before (left) and after (right) amination of the PS residues in
PDF
Album
Full Research Paper
Published 06 Dec 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • "Vector", Koltsovo, Novosibirsk region, 630559, Russia 10.3762/bjnano.9.234 Abstract The development of efficient and convenient systems for the delivery of nucleic-acid-based drugs into cells is an urgent task. А promising approach is the use of various nanoparticles. Silica nanoparticles can be used as
  • formation of TiO2·PL–DNA nanocomposites [1][2]. Silica nanoparticles can also be used as vehicles to deliver nucleic acid fragments into cells [3][4]. SiO2 nanoparticles bearing amino groups on the surface were shown to bind plasmid DNA, allowing the nanoparticles to penetration into cells, and even nuclei
  • known to degrade to orthosilicic acid, Si(OH)4, which is found in almost all human tissues and effectively excreted through the urine [9]. Organically modified silica nanoparticles are known for their low toxicity and biocompatibility and can be used for targeted imaging and therapy [10][11]. The
PDF
Album
Full Research Paper
Published 21 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • both in vitro and in vivo studies [5]. Gold nanoparticles conjugated with a trans-activating transcriptional activator (TAT) peptide modification encapsulated with the drug doxorubicin showed enhanced toxicity in brain cancer models [6]. Further, mesoporous silica nanoparticles were successfully used
  • for hepatoma targeted delivery of docetaxel with lactose as the targeting molecule [7]. Curcumin-loaded organically modified silica nanoparticles (ORMOSIL) were studied to check the potential anticancer property of ORMOSIL nanocarriers [8]. However, in some instances, after nanoparticle formation, the
  • the bulk. Thus metal-based NPs applied to biomedical applications could contradict the success of disease prognosis and treatment. Upon synthesis via solvent-extraction or calcination procedures, mesoporous silica nanoparticles (MSNs) were found to inhibit cellular respiration [10] in the in vivo
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • ; silver; Introduction Silica nanoparticles in an aqueous suspension are known to be inert and dispersible – properties which can be quite useful in the preparation of colloidal nanocomposites with silver. For this reason, there are a significant number of studies in the literature on colloidal substrates
  • of the present work is to apply laser ablation to the fabrication of new materials for surface enhanced Raman scattering (SERS) [15][16], focusing on silver and silica nanoparticles in aqueous suspension. This research was undertaken for three main reasons. The first is that silver nanoparticles that
  • ) that are mostly located on the surface of the silica nanoparticles, which appear as spheres with uniform sizes (about 20 nm), or among them as bridges. There are no silver nanoparticles present that are not attached to silica nanoparticles. This could be due to the interaction of the laser-ablated
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • silica nanoparticles”); source published under Creative Commons Attribution 2.0 license, https://creativecommons.org/licenses/by/2.0/; copyright the authors. Top-view (left) and tilted 60° (right) SEM micrographs of PS962-b-PEO3409 (a, b), PS563-b-PEO1614 (c, d) and PS385-b-PEO1205 (e, f) soft-templated
  • principle behind the sieving method: screen-filter separation is based on size exclusion, whereas depth-filter separation is based also on the interactions between the material forming the functional membrane and the target molecule being separated/isolated. In our recent study [22], colloidal silica
  • nanoparticles (produced by using PS-b-PEO block copolymers as templates) are deposited via spin-coating onto a macroporous silicon-based substrate, forming a depth-filtering system (i.e., interparticle voids of 15–200 nm). In order to evaluate the selectivity of this porous membrane, two cationic (macro
PDF
Album
Review
Published 29 Aug 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • and colleagues established that near-field light scattering using the nanophotonic force microscope can be used to measure the size of bare silica and PEG-coated silica nanoparticles very accurately [24]. PEGylation of the nanoparticle slightly altered the particle’s surface chemistry and increased
PDF
Album
Full Research Paper
Published 18 Apr 2018

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • concentrations of silica nanoparticles. As a consequence, the parameters of the common fit equation vary with the starting point of the fit. Although the wavelength is least affected and seems to be quite robust against the starting point of the fit, all three parameters show distinct oscillations, with a period
  • fitting parameters in the system studied here. Keywords: confinement; depletion; fitting; silica nanoparticles; structural forces; Introduction Oscillatory structural forces are a genuine feature observed for simple and complex fluids in the vicinity of smooth surfaces [1][2]. Due to the ubiquitous
  • observed in molecular liquids [1][2], but also in complex fluids such as liquid crystals [22][23], micellar or polyelectrolyte solutions [3][24][25][26][27][28][29] and particle suspensions [19][30][31][32][33]. Recent studies showed that for colloidal suspensions of charged silica nanoparticles the period
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

  • Fuat Topuz and
  • Tamer Uyar

Beilstein J. Nanotechnol. 2018, 9, 693–703, doi:10.3762/bjnano.9.64

Graphical Abstract
  • /bjnano.9.64 Abstract Mesoporous silica nanoparticles (MSNs) have sparked considerable interest in drug/gene delivery, catalysis, adsorption, separation, sensing, antireflection coatings and bioimaging because of their tunable structural properties. The shape, size and pore structure of MSNs are greatly
  • smaller particle size than those produced with HP-functional CDs. FTIR, TGA and solid-state 13C NMR demonstrated the adsorption of CDs on the particle surfaces. The proposed concept allows for the synthesis of silica nanoparticles with control over particle shape and size by adjusting the concentration of
  • additives in a simple, one-pot reaction system for a wide range of applications. Keywords: cyclodextrin; faceted particles; mesoporous silica nanoparticles (MSN); microporous; Introduction With the availability of several types of surfactants and the increased understanding of sol–gel chemistry, numerous
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • concentration of silica nanoparticles in the composite surfaces from 10 to 30 mg·mL−1 leads to an increase in the amplitude parameters, while the pitch parameters remain random. To decouple the individual effect of the amplitude parameters and pitch parameters on slip, surfaces with the same AR roughness were
PDF
Album
Full Research Paper
Published 27 Nov 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • is caused by the scattering of electrons in the substrate. Silica nanoparticles Electron beam induced fixation can be applied not only to Au but also to other materials. To indicate the versatility of this technique and the possibility of other applications, the fixation of silica nanoparticles was
  • also demonstrated. Figure 11 shows silica nanoparticles fixed on a Au-coated Si substrate. As the surface of colloidal silica particles was modified with –COOH groups, a dissociation of the organic shells occurs and the particles are fixed on the substrate. Conclusion The mechanism of fixing
  • . Dodecanethiol and ethanol were purchased from Wako Co., Ltd., Japan. The substrate was observed with SEM and the width of the area in which the nanoparticles remained was measured. To show the versatility of this technique silica nanoparticles were also fixed. An Au thin film, the thickness of which was about 5
PDF
Album
Full Research Paper
Published 26 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • capacity of nanoparticles to enter and transport across such barriers. In this work, Caco-2 intestinal epithelial cells were used as a well-established model for the intestinal barrier, and the uptake, trafficking and translocation of model silica nanoparticles of different sizes were investigated using a
  • end, model silica nanoparticles of different sizes, for which information on uptake and intracellular distribution in typical in vitro cell lines is already available [36][37], were exposed to differentiated Caco-2 barriers. In order to determine the role of molecules adsorbed on the nanoparticles
  • Discussion Particle physicochemical characterisation Green fluorescent silica nanoparticles (SiO2-NPs) of 50 and 150 nm diameter were synthesized according to previous literature [42]. In order to remove eventual free fluorescent dye releasing from the labelled nanoparticles [3][43][44], the nanoparticle
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • , fluorescent nanomaterials have gained high relevance in biological applications as probes for various fluorescence-based spectroscopy and imaging techniques. Among these materials, dye-doped silica nanoparticles have demonstrated a high potential to overcome the limitations presented by conventional organic
  • dyes such as high photobleaching, low stability and limited fluorescence intensity. In the present work we describe an effective approach for the preparation of fluorescent silica nanoparticles in the size range between 15 and 80 nm based on L-arginine-controlled hydrolysis of tetraethoxysilane in a
  • agglomeration and stability) and the fluorescence properties of the obtained particles were compared to particles from commonly known synthesis methods. As a result, the spectroscopic characteristics of the presented monodisperse dye-doped silica nanoparticles were similar to those of the free uncoupled dyes
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • , the maximum of this band is at about 13000–14000 cm−1. We measured adsorption isotherms of n-hexane, acetonitrile and water (Figure S10, Supporting Information File 1) to compare the properties of silica nanoparticles with fluorine (see Supporting Information File 1) and amino/perfluoroalkyl
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

  • Huijuan Zhang,
  • Fuqiang Wu,
  • Yazhen Li,
  • Xiping Yang,
  • Jiamei Huang,
  • Tingting Lv,
  • Yingying Zhang,
  • Jianzhong Chen,
  • Haijun Chen,
  • Yu Gao,
  • Guannan Liu and
  • Lee Jia

Beilstein J. Nanotechnol. 2016, 7, 1861–1870, doi:10.3762/bjnano.7.178

Graphical Abstract
  • could be another reason for the enhanced anti-proliferative efficiency of MCN. In our previous report, we loaded MIF into mesoporous silica nanoparticles (MSNs) coated with aEpCAM (aE-MSN-M) to target circulating tumor cells for cancer metastasis prevention, and also found that MIF entrapped in aE-MSN-M
PDF
Album
Full Research Paper
Published 28 Nov 2016

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake
  • mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle
  • : ATP depletion; calcium crystallization; cytotoxicity; endocytosis; HeLa cells; LDH; mesenchymal stem cells; morphology; necrosis; particle size; silica nanoparticles; TEM; Introduction Silicon dioxide nanoparticles (SiNPs) are used in a wide range of commercially available products to improve product
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Fabrication and properties of luminescence polymer composites with erbium/ytterbium oxides and gold nanoparticles

  • Julia A. Burunkova,
  • Ihor Yu. Denisiuk,
  • Dmitri I. Zhuk,
  • Lajos Daroczi,
  • Attila Csik,
  • István Csarnovics and
  • Sándor Kokenyesi

Beilstein J. Nanotechnol. 2016, 7, 630–636, doi:10.3762/bjnano.7.55

Graphical Abstract
  • enables a high yield of REO in the proposed reaction. Synthesis without silica addition results in products that are soluble in glycerin. The presence of silica nanoparticles improves the compatibility of the obtained REO particles with the polymer matrix when fabricating nanocomposites. At the same time
  • with AuNPs. Direct optical microscopy investigations supported the uniform distribution of luminescence from the surface of the excited layer, which correlates with TEM data in Figure 6. Obviously, since the luminescent Er/Yb oxide nanoparticles are located near the surface of silica nanoparticles
PDF
Album
Full Research Paper
Published 26 Apr 2016

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS), and using polystyrene-block-poly
  • (ethylene oxide) (PS-b-PEO) copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained
  • dye methylene blue (MB, molecular weight (MW) = 320 Da) and the cationic protein ribonuclease A (RNAse, MW = 13700 Da). Results and Discussion Synthesis, preparation and physicochemical characterization of the colloidal silica nanoparticles and mesoporous coatings Amphiphilic block copolymers in
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015
Other Beilstein-Institut Open Science Activities